Long lasting changes in the strength of synaptic transmission in the hippocampus are thought to underlie certain forms of learning and memory. Accordingly, the molecular mechanisms that account for these changes are heavily studied. Postsynaptically, changes in synaptic strength can occur by altering the amount of neurotransmitter receptors at the synapse or by altering the functional properties of synaptic receptors. In this study, we examined the biochemical changes produced following chemically induced long term depression in acute hippocampal CA1 minislices. Using three independent methods, we found that this treatment did not lead to an internalization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Furthermore, when the plasma membrane was separated into synaptic membrane-enriched and extrasynaptic membrane-enriched fractions, we actually observed a significant increase in the concentration of AMPA receptors at the synapse. However, phosphorylation of Ser-845 on the AMPA receptor subunit GluR1 was significantly decreased throughout the neuron, including in the synaptic membrane-enriched fraction. In addition, phosphorylation of Ser-831 on GluR1 was decreased specifically in the synaptic membrane-enriched fraction. Phosphorylation of these residues has been demonstrated to control AMPA receptor function. From these data, we conclude that the decrease in synaptic strength is likely the result of a change in the functional properties of AMPA receptors at the synapse and not a decrease in the amount of synaptic receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586268PMC
http://dx.doi.org/10.1074/jbc.M803431200DOI Listing

Publication Analysis

Top Keywords

ampa receptor
12
receptors synapse
12
ampa receptors
12
synaptic membrane-enriched
12
synaptic
9
long term
8
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
8
acid ampa
8
synaptic strength
8
functional properties
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!