Sulfated polysaccharides promote the assembly of amyloid beta(1-42) peptide into stable fibrils of reduced cytotoxicity.

J Biol Chem

Biomolecular Interactions Team, Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Science Park, University of Barcelona, Baldiri Reixac 10, Barcelona E08028, Spain.

Published: November 2008

The histopathological hallmarks of Alzheimer disease are the self-aggregation of the amyloid beta peptide (Abeta) in extracellular amyloid fibrils and the formation of intraneuronal Tau filaments, but a convincing mechanism connecting both processes has yet to be provided. Here we show that the endogenous polysaccharide chondroitin sulfate B (CSB) promotes the formation of fibrillar structures of the 42-residue fragment, Abeta(1-42). Atomic force microscopy visualization, thioflavin T fluorescence, CD measurements, and cell viability assays indicate that CSB-induced fibrils are highly stable entities with abundant beta-sheet structure that have little toxicity for neuroblastoma cells. We propose a wedged cylinder model for Abeta(1-42) fibrils that is consistent with the majority of available data, it is an energetically favorable assembly that minimizes the exposure of hydrophobic areas, and it explains why fibrils do not grow in thickness. Fluorescence measurements of the effect of different Abeta(1-42) species on Ca(2+) homeostasis show that weakly structured nodular fibrils, but not CSB-induced smooth fibrils, trigger a rise in cytosolic Ca(2+) that depends on the presence of both extracellular and intracellular stocks. In vitro assays indicate that such transient, local Ca(2+) increases can have a direct effect in promoting the formation of Tau filaments similar to those isolated from Alzheimer disease brains.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M709870200DOI Listing

Publication Analysis

Top Keywords

alzheimer disease
8
tau filaments
8
fluorescence measurements
8
assays indicate
8
fibrils
7
sulfated polysaccharides
4
polysaccharides promote
4
promote assembly
4
assembly amyloid
4
amyloid beta1-42
4

Similar Publications

Validation of Machine Learning-assisted Screening of PKC Ligands: PKC Binding Affinity and Activation.

Biosci Biotechnol Biochem

January 2025

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.

Protein kinase C (PKC) is a family of serine/threonine kinases, and PKC ligands have the potential to be therapeutic seeds for cancer, Alzheimer's disease, and human immunodeficiency virus infection. However, in addition to desired therapeutic effects, most PKC ligands also exhibit undesirable pro-inflammatory effects. The discovery of new scaffolds for PKC ligands is important for developing less inflammatory PKC ligands, such as bryostatins.

View Article and Find Full Text PDF

Evaluating amyloid-beta aggregation and toxicity in transgenic Caenorhabditis elegans models of Alzheimer's disease.

Methods Cell Biol

January 2025

Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.

View Article and Find Full Text PDF

The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities.

View Article and Find Full Text PDF

Association of statins use and genetic susceptibility with incidence of Alzheimer's disease.

J Prev Alzheimers Dis

February 2025

Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, No.29, Xinquan Road, Gulou District, Fuzhou, Fujian Province, 350000, China; Institute of Clinical Neurology, Fujian Medical University, No.29 Xinquan Road, Gulou District, Fuzhou, Fujian Province, 350000, China. Electronic address:

Background: The effect of statins use on the incidence of Alzheimer's disease (AD) is still under debate, and it could be modified by a series of factors.

Objectives: We aimed to examine the association of statins use with the risk of cognitive impairment and AD, and assess the moderating roles of genetic susceptibility and other individual-related factors.

Design: A longitudinal study was conducted from the UK Biobank where individuals completed baseline surveys (2006-2010) and were followed (mean follow-up period: 9 years).

View Article and Find Full Text PDF

Core blood biomarkers of Alzheimer's disease: A single-center real-world performance study.

J Prev Alzheimers Dis

February 2025

Neurology, Fondazione IRCCS "San Gerardo dei Tintori", Monza, Italy; Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy; Laboratory of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. Electronic address:

Background: The new criteria for Alzheimer's disease pave the way for the introduction of core blood biomarkers of Alzheimer's disease (BBAD) into clinical practice. However, this depends on the demonstration of sufficient accuracy and robustness of BBADs in the intended population.

Objectives: To assess the diagnostic performance of core BBADs in our memory clinic, comparing them with cerebrospinal fluid (CSF) analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!