A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[In vitro drug release from a mitomycin C delivery system and its effect against scar tissue adhesion in vivo]. | LitMetric

Objective: To develop a chitosan (CH)/polyethylene glycols succinate acid (PEG-SA)-mediated mitomycin C (MMC) delivery system and investigate its drug release characteristics in vitro and its effect against scar tissue adhesion in vivo.

Methods: Mitomycin C loading in the composite CH/PEG-SA/MMC films was determined using ultraviolet. The freeze-dried films were dispersed in 1 ml PBS (pH7.4) and mitomycin C release in vitro was determined according to the mitomycin C concentration-UV value standard curve. The influence of the film structure on the drug release was evaluated. The drug delivery system was then implanted in SD rats, and 4 weeks later, immunohistochemical and histological examinations were carried out to assess the therapeutic effect on epidural scar tissue.

Results: The linear regression equation of the mitomycin C concentration-UV value standard curve was y=0.593x(3)-2.563x(2)+25.944x-0.236 (R(2)=1.000). The film demonstrated good drug delivery capability, and 20 mg of the samples in PBS showed a peak mitomycin C release after 12 days of 14.9616 microg/ml, which was higher than the ID(50) of mitomycin C (10.4713 microg/l) to the fibroblasts. On days 18 and 32, another two drug release peaks occurred (14.4824 microg/ml and 11.4092 microg/ml, respectively), followed by maintenance of slow release. Till day 60, the accumulative mitomycin release reached 0.1793 microg/ml, and the loaded drug was ultimately completely released. Significant differences were noted in the hydroxyproline content in the scar tissues of different groups (F=12.085, P=0.000), and the CH/PEG-SA/MMC DDS reduced the amount of scar tissue and promoted its orderly alignment to control potential scar hyperplasia that may compress the spinal cord and nerve roots.

Conclusion: The composite film for drug delivery possesses good flexibility and mechanical properties and allows sustained drug release of mitomycin C to prevent epidural scar tissue adhesion following lumbar laminectomy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

drug release
20
scar tissue
16
delivery system
12
tissue adhesion
12
mitomycin release
12
drug delivery
12
mitomycin
10
drug
9
release
9
release mitomycin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!