The effect of plasma membrane water permeability on the rate of changes in the volume of principal cells of collecting ducts of the outer substantia medullaris under conditions of hypoosmotic shock has been studied. Changes in cell volume were studied by the fluorescent method. It was shown that the hypotonic shock induced a rapid increase in the cell volume with the characteristic time that depended on plasma membrane water permeability. The decrease in volume occurred much more slowly, and the rate of volume decrease directly correlated with the rate of swelling. The inhibition of potassium transport by barium chloride decreased the rate of volume restoration, without affecting substantially the duration of the swelling phase. The inhibition of mercury-sensitive water channels by mercury caused a significant increase in the time of both cell swelling and volume restoration. It was concluded that the state of water channels largely determines the rate of the regulatory response of epithelial cells of collecting ducts to hypoosmotic shock and affects the exchange of cell osmolites.

Download full-text PDF

Source

Publication Analysis

Top Keywords

water channels
12
collecting ducts
12
volume
8
volume principal
8
principal cells
8
ducts hypoosmotic
8
plasma membrane
8
membrane water
8
water permeability
8
cells collecting
8

Similar Publications

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is characterized by the inability of the fetus to achieve its growth potential due to pathological factors, most commonly impaired placental trophoblast cell function. Currently, effective prevention and treatment methods of FGR are limited. We aimed to explore the pathogenesis of FGR and provide potential strategies for mitigating its occurrence.

View Article and Find Full Text PDF

Background: The presence of diffuse brain damage in normal-appearing white matter (NAWM) and gray matter (NAGM) in neuromyelitis optica spectrum disorder (NMOSD) remains controversial. We aimed to address this controversy by applying a multiparametric MRI approach. Additionally, the association between MRI metrics and clinical variables was explored.

View Article and Find Full Text PDF

Parasitic plants pose a substantial threat to agriculture as they attack economically important crops. The stem parasitic plant Cuscuta campestris invades the host's stem with a specialized organ referred to as the haustorium, which absorbs nutrients and water from the host. Initiation of the parasitic process in C.

View Article and Find Full Text PDF

Continuous photo-oxidation of methane to methanol at an atomically tailored reticular gas-solid interface.

Nat Commun

January 2025

Research Center for Solar Driven Carbon Neutrality, School of Physics Science and Technology, In-stitute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.

Photo-oxidation of methane (CH) using hydrogen peroxide (HO) synthesized in situ from air and water under sunlight offers an attractive route for producing green methanol while storing intermittent solar energy. However, in commonly used aqueous-phase systems, photocatalysis efficiency is severely limited due to the ultralow availability of CH gas and HO intermediate at the flooded interface. Here, we report an atomically modified metal-organic framework (MOF) membrane nanoreactor that promotes direct CH photo-oxidation to methanol at the gas-solid interface in a reticular open framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!