One of the goals of islet transplantation is to transplant viable islets without host immunosuppression. The present study was designed to determine whether pretreatment of islets with mitomycin-C (MMC) followed by culture enhances islet survival in a rat-to-mouse xenogeneic combination. WS(RT1k) rat islets pretreated with various concentrations of MMC (0, 3.2, 10, 32, 100, 320, and 1000 microg/ml) were tested for viability by in vitro insulin secretory capacity and vital staining of islets. The MMC-treated islets (10 microg/ml) cultured for various periods (4, 20, or 40 h, 3 or 7 days) were transplanted into the renal subcapsular space of STZ-induced diabetic C57BL/6 (B6: H-2b) mice. MMC-treated or nontreated islets were subjected to microarray gene analysis and immunohistological study. Evaluation of in vitro insulin secretory capacity and vital staining of islets indicated that MMC at a dose < or =32 microg/ml is nontoxic and preserves islet function. Marked prolongation of graft survival was noted with half of islet grafts surviving indefinitely (>100 days) when 10 microg/ml of MMC-treated islets was transplanted after 40 h or 3 days in culture, but not when they were transplanted within 4 h following treatment or at 7 days following treatment, indicating that there is a critical culture period necessary for successful islet graft survival. Microarray analysis suggested possible genes for this prolongation with TGF-beta highly expressed in MMC-treated islets subjected to culture for 3 days. Our results indicate that MMC treatment followed by a critical culture period induces marked prolongation of rat islet xenograft survival in nonimmunosuppressed recipient mice, offering a strategy for islet transplantation without immunosuppression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/096368908786092720 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!