Magnetic source separation in Earth's outer core.

Science

Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA.

Published: September 2008

We present evidence that the source of Earth's axial dipole field is largely independent from the sources responsible for the rest of the geomagnetic field, the so-called nonaxial dipole (NAD) field. Support for this claim comes from correlations between the structure of the historic field and the behavior of the paleomagnetic field recorded in precisely dated lavas at those times when the axial dipole was especially weak or nearly absent. It is argued that a "stratification" of magnetic sources exists in the fluid core such that the axial dipole is the only observed field component that is nearly immune from the influence exerted by the lowermost mantle. It follows that subsequent work on spherical harmonic-based field descriptions may now incorporate an understanding of a dichotomy of spatial-temporal dynamo processes.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1159777DOI Listing

Publication Analysis

Top Keywords

axial dipole
12
field
7
magnetic source
4
source separation
4
separation earth's
4
earth's outer
4
outer core
4
core evidence
4
evidence source
4
source earth's
4

Similar Publications

This paper presents a high-performance circularly polarized (CP) magneto-electric (ME) dipole antenna optimized for wideband millimeter-wave (mm-wave) frequencies, specifically targeting advancements in 5G and 6G technologies. The CP antenna is excited through a transverse slot in a printed ridge gap waveguide (PRGW), which operates in a quasi-transverse electromagnetic (Q-TEM) mode. Fabricated on Rogers RT 3003 substrate, selected for its low-loss and cost-effective properties at high frequencies, the design significantly enhances both impedance and axial ratio (AR) bandwidths.

View Article and Find Full Text PDF

Revisiting the Optical Spectrum of the Plutonyl Ion (PuO) in 1 M HClO.

J Phys Chem A

January 2025

MS 70A3317, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

The analysis of the solution absorption spectrum of the plutonyl ion in an aqueous environment was given by Eisenstein and Pryce (E&P) in 1968. In 2011 a new spectrum was published of the (PuO) ion in 1 M HClO. We have been provided with the original data of this spectrum and have found in the data a previously unreported low-lying transition at 7385 cm which we have assigned as a magnetic dipole transition.

View Article and Find Full Text PDF
Article Synopsis
  • The LUX-ZEPLIN (LZ) experiment is a significant scientific study using a dual-phase xenon chamber located underground in South Dakota to search for dark matter interactions.
  • The study extends existing theories to include relativistic effects, providing new constraints on the interactions between weakly interacting massive particles and nucleons based on their electric and magnetic dipole moments.
  • Results include 90% confidence level limits on the coupling strength of five different interactions, analyzed over a specific energy range, which advances our understanding in particle physics beyond previous nonrelativistic effective field theories.
View Article and Find Full Text PDF

We develop a new all-dielectric metasurface for designing high quality-factor (-factor) quasi-bound states in the continuum (quasi-BICs) using asymmetry kite-shaped nanopillar arrays. The -factors of quasi-BICs follow the quadratic dependence on the geometry asymmetry, and meanwhile their resonant spectral profiles can be readily tuned between Fano and Lorentzian lineshapes through the interplay with the broadband magnetic dipole mode. The third-harmonic signals of quasi-BIC modes exhibit a gain from 43.

View Article and Find Full Text PDF

Inversion of circularly polarized luminescence by electric current flow during transition.

Phys Chem Chem Phys

December 2024

Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.

The development of chiral compounds exhibiting circularly polarized luminescence (CPL) has advanced remarkably in recent years. Designing CPL-active compounds requires an understanding of the electric transition dipole moment () and the magnetic transition dipole moment () in the excited state. However, while the direction and magnitude of can, to some extent, be visually inferred from chemical structures, remains elusive, posing challenges for direct predictions based on structural information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!