Degradation of n-butyl benzyl phthalate using TiO2/UV.

J Hazard Mater

Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.

Published: May 2009

n-Butyl benzyl phthalate (BBP) has been classified as endocrine disrupting compound and priority pollutant. Effects of TiO(2) dosage, pH, initial BBP concentration and co-existing substances on the degradation of BBP by TiO(2)/UV process were investigated. The optimal TiO(2) dosage and pH value for the BBP degradation were 2.0gL(-1) and 7.0, respectively. The degradation rate of BBP by TiO(2)/UV process could be fitted pseudo-first-order kinetics. The effects of co-existing substances on the degradation rate of BBP revealed that some anions (such as BrO(3)(-), ClO(4)(-) and Cr(2)O(7)(2-)) could enhance BBP degradation, and other anions would restrain BBP degradation. The sequence of inhibition was PO(4)(3-)>CO(3)(2-)>NO(3)(-)>SO(4)(2-)>Cl(-). The cations K(+), Na(+), Mg(2+) and Ca(2+) had the restrained effect on the BBP degradation, and the effect of Ca(2+) was the strongest among four cations tested. The organic compounds acetone and methanol decreased the degradation rate of BBP. The major intermediates of BBP degradation were identified as mono-butyl phthalate, mono-benzyl phthalate and phthalic acid, and a primary degradation mechanism was proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2008.08.027DOI Listing

Publication Analysis

Top Keywords

bbp degradation
20
degradation rate
12
rate bbp
12
degradation
11
bbp
11
n-butyl benzyl
8
benzyl phthalate
8
tio2 dosage
8
co-existing substances
8
substances degradation
8

Similar Publications

Background: Cancer remains a leading cause of death worldwide. Environmental factors, specifically endocrine-disrupting chemicals (EDCs), like phthalates, are increasingly being linked to cancer development. Phthalates, widely used in consumer products, can activate the aryl hydrocarbon receptor (AhR).

View Article and Find Full Text PDF

Endocrine-disrupting chemicals (EDCs), including phthalates, have been implicated in the development of non-alcoholic fatty liver disease (NAFLD) and hepatic fibrosis. This study investigates the age-dependent effects of butyl benzyl phthalate (BBP) exposure on lipid metabolism in the livers of young and aged mice. Young (2-month-old) and aged (20-month-old) male C57BL/6 mice were exposed to BBP through drinking water at a dose of 169 μg/kg/day for 6 and 4 months, respectively.

View Article and Find Full Text PDF

Background: Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns.

Methods: Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines.

View Article and Find Full Text PDF

Bottlebrush polymers (BBPs) have garnered significant attention as advanced drug delivery systems, capable of transporting a diverse range of therapeutic agents, including both chemical drugs and biologics. Despite their effectiveness, the empty BBP vectors post-drug release may pose long-term safety risks due to their difficult systemic clearance. Here, a responsive degradable BBP platform for cancer therapy is developed, featuring a poly(disulfide) backbone grafted with fluorine-terminated zwitterionic side chains.

View Article and Find Full Text PDF

Comparison of highly sensitive, multiplex immunoassay platforms for streamlined clinical cytokine quantification.

Bioanalysis

January 2025

Precision Medicine - Biomarker & Bioanalytical Platforms (BBP), GSK, Stevenage, UK.

Introduction: Selecting the optimal platforms to quantitate cytokines is challenging due to varying performance and the plethora of options available.

Aims: To compare performance of three highly sensitive, multiplex assays on three different platforms - MSD S-plex, Olink Target 48, and Quanterix SP-X - to MSD V-plex which is widely used for quantitative cytokine assay.

Methods: Serum and stimulated plasma samples were analyzed across each platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!