Neurotransmission in the brain is critically dependent on excitatory synaptic signaling mediated by AMPA-class ionotropic glutamate receptors (AMPARs). AMPARs are known to be associated with Transmembrane AMPA receptor Regulatory Proteins (TARPs). In vertebrates, at least four TARPs appear to have redundant roles as obligate chaperones for AMPARs, thus greatly complicating analysis of TARP participation in synaptic function. We have overcome this limitation by identifying and mutating the essential set of TARPs in C. elegans (STG-1 and STG-2). In TARP mutants, AMPAR-mediated currents and worm behaviors are selectively disrupted despite apparently normal surface expression and clustering of the receptors. Reconstitution experiments indicate that both STG-1 and STG-2 can functionally substitute for vertebrate TARPs to modify receptor function. Thus, we show that TARPs are obligate auxiliary subunits for AMPARs with a primary, evolutionarily conserved functional role in the modification of current kinetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754846PMC
http://dx.doi.org/10.1016/j.neuron.2008.07.023DOI Listing

Publication Analysis

Top Keywords

glutamate receptors
8
synaptic function
8
stg-1 stg-2
8
tarps
6
evolutionary conserved
4
conserved role
4
role tarps
4
tarps gating
4
gating glutamate
4
receptors tuning
4

Similar Publications

Patient-derived NMDAR mAbs combined with single-particle cryo-electron microscopy reveal multiple GluN1 epitopes and distinct functional effects.

View Article and Find Full Text PDF

Background: Synapses can modify their strength in response to activity, and the unique properties of synapses that regulate their plasticity are essential for memory. Long-term potentiation (LTP) is considered the physiological basis for how neurons encode new memories. A complex series of postsynaptic signaling events in LTP is associated with memory deficits in tauopathy models, but the mechanism by which pathogenic tau inhibits plasticity at synapses is unknown.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

Background: Glutamatergic neurotransmission system dysregulation may play an important role in the pathophysiology of Alzheimer's disease (AD). However, reported results on glutamatergic components across brain regions are contradictory. Here, we conducted a systematic review with meta-analysis to examine whether there are consistent glutamatergic abnormalities in the human AD brain.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a common form of dementia characterized by the accumulation of amyloid beta (Aβ) and phosphorylated tau proteins in the brain. While clinical observations are typically used for AD diagnosis, postmortem studies have revealed individuals without dementia symptoms but with high AD pathology, known as resilient individuals. Calcium permeable AMPA receptors (CP-AMPARs) have been implicated in the calcium dyshomeostasis of AD, but it is unclear whether they are found or behave differently at the electrophysiological level in resilient and control individuals compared to AD patients.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is a prevalent age-related neurodegenerative condition leading to dementia, yet factors regulating its polygenomic etiology and progression remain elusive. MicroRNAs (miRNAs), small RNA molecules regulating protein expression, play a role in neurodegeneration. MicroRNA-34a (miR-34a) is a crucial regulator of numerous genes associated with neurodegenerative disorders, protein aggregation and synaptic transmission genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!