We use two episodes from systematic history to illustrate how conflict between immature and adult data was important for the development of phylogenetic systematics. A reference search in Zoological Record reveals that most phylogenetic analyses of endopterygote insects continue to utilize morphological rather than DNA sequence data. However, the use of immature and adult data is established for only a few taxa. An assessment of the phylogenetic utility of 73 matrices with immature and adult data reveals that the immature partitions have fewer characters and that immature characters provide lower node support through homoplasy levels in immatures, and adult partitions are comparable. Despite much conflict, analyses based on all available evidence yield better tree resolution and higher support. We argue that DNA sequence-based matching of immature and adult stages will greatly help with the study of endopterygote immatures and facilitate the assembly of combined character matrices with data from all life-history stages.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.ento.54.110807.090459DOI Listing

Publication Analysis

Top Keywords

immature adult
20
adult data
12
immature
7
adult
6
data
5
conflict convergent
4
convergent evolution
4
evolution relative
4
relative immature
4
adult characters
4

Similar Publications

Ondansetron blocks fluoxetine effects in immature neurons in the adult rat piriform cortex layer II.

Neurosci Lett

December 2024

Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain. Electronic address:

Neuronal structural plasticity gives the adult brain the capacity to adapt to internal or external factors by structural and molecular changes. These plastic processes seem to be mediated, among others, by the action of the neurotransmitter serotonin through specific receptors (5-HTRs). Previous studies have shown that the maturation of granule cells in the hippocampus is mediated by 5-HT3.

View Article and Find Full Text PDF

Comparing CT-like bone images based on FRACTURE MR with CT in pediatric congenital vertebral anomalies.

AJNR Am J Neuroradiol

December 2024

From the Department of Radiology (H.N.M., F.B.G.), Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India.

Background And Purpose: Congenital vertebral anomalies are commonly associated with underlying spinal cord anomaly which necessitates imaging both the spinal cord and the bony vertebral column to understand the extent of the deformity better. While MRI is the gold standard for spinal cord imaging, it does not provide CT-like bone details. Many MR bone imaging techniques have been tested in various adult spine conditions in the past decade but not much has been described on their reliability in pediatric spine.

View Article and Find Full Text PDF

Shoulder injuries, specifically proximal humeral fractures, are uncommon in skeletally immature patients. The anatomic characteristics of the humerus are determined by its ossification development, which is quite particular in the proximal segment where four principal segments have been outlined as fracture components in adults. Hereby, we present the case of an 18-year-old female who suffered a traffic accident that elicited a proximal humeral injury through the physeal line of the anatomical neck, as well as the treatment given and her clinical outcome with an effort to highlight the complexity of the diagnosis and management of this injury given the transitional bone age.

View Article and Find Full Text PDF

Thrips (Thysanoptera: Thripidae) can injure seedling cotton (Gossypium hirsutum L.), soybean (Glycine max (L.) Merr.

View Article and Find Full Text PDF

Müller glia in short-term dark adaptation of the Austrolebias charrua retina: Cell proliferation and cytoarchitecture.

Exp Cell Res

December 2024

Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay. Electronic address:

Fish with unique life cycles offer valuable insights into retinal plasticity, revealing mechanisms of environmental adaptation, cell proliferation, and thus, potentially regeneration. The variability of the environmental factors to which Austrolebias annual fishes are exposed has acted as a strong selective pressure shaping traits such as nervous system plasticity. This has contributed to adaptation to their extreme conditions including the decreased luminosity as ponds dry out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!