In this study, the microwave-assisted copper(I)-catalyzed 1,3-dipolar cycloaddition reaction was used to synthesize peptide triazole-based polymers from two novel peptide-based monomers: azido-phenylalanyl-alanyl-lysyl-propargyl amide (1) and azido-phenylalanyl-alanyl-glycolyl-lysyl-propargyl amide (2). The selected monomers have sites for enzymatic degradation as well as for chemical hydrolysis to render the resulting polymer biodegradable. Depending on the monomer concentration in DMF, the molecular mass of the polymers could be tailored between 4.5 and 13.9 kDa (corresponding with 33-100 amino acid residues per polymer chain). As anticipated, both polymers can be enzymatically degraded by trypsin and chymotrypsin, whereas the ester bond in the polymer of 2 undergoes chemical hydrolysis under physiological conditions, as was shown by a ninhydrin-based colorimetric assay and MALDI-TOF analysis. In conclusion, the microwave-assisted copper(I)-catalyzed 1,3-dipolar cycloaddition reaction is an effective tool for synthesizing biodegradable peptide polymers, and it opens up new approaches toward the synthesis of (novel) designed biomedical materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm8005984 | DOI Listing |
Sensors (Basel)
January 2025
School of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China.
Potential applications of microwave energy, a developed form of clean energy, are diverse and extensive. To expand the applications of microwave heating in the metallurgical field, it is essential to obtain the permittivity of ores throughout the heating process. This paper presents the design of a 2.
View Article and Find Full Text PDFMolecules
January 2025
Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.
Butyl phenyl--phosphinate that is not available commercially was prepared from phenyl--phosphinic acid by three methods: by alkylating esterification (i), by microwave-assisted direct esterification (ii), and unexpectedly, by thermal esterification (iii). Considering the green aspects, selectivity and scalability, the thermal variation seemed to be optimal. However, there was need for prolonged heating.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy.
Sinter-crystallization is a specific method of producing glass-ceramics that allows the manufacture of complexly shaped products, composites and solder. However, it usually is limited when the glass powders used are characterized by a high crystallization trend. This study proposes a new opportunity to improve the sinter-crystallization and demonstrates the benefits of microwave processing using diopside (CaMg(SiO)) glass-ceramics with an enhanced crystallinity of ~70%.
View Article and Find Full Text PDFFoods
January 2025
Faculty of Technology and Metallurgy, University of Belgrade, 11120 Belgrade, Serbia.
A rapid and efficient ultrasound-assisted extraction (UAE) procedure followed by inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of 14 rare earth elements (REEs) (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), along with yttrium (Y) and scandium (Sc), in coffee samples. The method was validated using certified reference material (NIST SRM 1547), recovery tests at four fortification levels, and comparisons with microwave-assisted digestion (MAD). Excellent accuracy and precision were achieved, with recovery rates ranging from 80.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Supplying critical metals such as cobalt, lithium, and nickel, to achieve sustainable development goals will be one of the most important concerns in the coming decades. A significant challenge in this area is the separation of some similar elements, such as nickel and cobalt. This study proposes a novel and eco-friendly process to selectively recover cobalt from nickel and manganese.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!