Effect of vermicompost on growth, yield and nutrition status of tomato (Lycopersicum esculentum).

Pak J Biol Sci

Department of Plant Productions, Moghan Jounior College of Agriculture, University of Mohaghegh Ardabili, Parsabad, P.O. Box 178, Ardabil Province, Iran.

Published: July 2008

An experiment was conducted to determine the effects of vermicompost on growth, yield and fruit quality of tomato (Lycopersicum esculentum var. Super Beta) in a field condition. The experiment was a randomized complete block design with four replications. The different rates of vermicompost (0, 5, 10 and 15 t ha(-1)) was incorporated into the top 15 cm of soil. During experiment period, fruits were harvested twice in a week and total yield were recorded for two months. At the end of experiment, growth characteristics such as leaf number, leaf area and shoot dry weights were determined. The results revealed that addition of vermicompost at rate of 15 t ha(-1) significantly (at p < 0.05) increased growth and yield compared to control. Vermicompost with rate of 15 t ha(-1) increased EC of fruit juice and percentage of fruit dry matter up to 30 and 24%, respectively. The content of K, P, Fe and Zn in the plant tissue increased 55, 73, 32 and 36% compared to untreated plots respectively. The result of our experiment showed addition of vermicompost had significant (p < 0.05) positive effects on growth, yield and elemental content of plant as compared to control.

Download full-text PDF

Source
http://dx.doi.org/10.3923/pjbs.2008.1797.1802DOI Listing

Publication Analysis

Top Keywords

growth yield
16
vermicompost growth
8
tomato lycopersicum
8
lycopersicum esculentum
8
addition vermicompost
8
vermicompost rate
8
rate ha-1
8
compared control
8
content plant
8
vermicompost
6

Similar Publications

A parallel bioreactor strategy to rapidly determine growth-coupling relationships for bioproduction: a mevalonate case study.

Biotechnol Biofuels Bioprod

January 2025

Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Background: The climate crisis and depleting fossil fuel reserves have led to a drive for 'green' alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation.

View Article and Find Full Text PDF

Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.

View Article and Find Full Text PDF

Studying genetic variability through the phenotypic performance of genotypes is crucial in the breeding program. Therefore, evaluating both yield performance and stability across diverse environments is essential in yield trials to identify high-yield potential and stable cultivars. In this study, we employed 12 univariate and 10 multivariate stability models to analyze how genotype (G), environment (E), and their interaction (G × E) affect the yield performance of 32 barley genotypes across 10 environments.

View Article and Find Full Text PDF

Barley leaf stripe, a disease mainly caused by Pyrenophora graminea (P. graminea) infection, severely affects barley yield and quality and is one of the most widespread diseases in barley production. However, little is known about the underlying molecular mechanisms of leaf stripe resistance.

View Article and Find Full Text PDF

Background: Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!