Surface electromyography (sEMG) measures myoelectrical signals recorded from sensors placed on the skin surface. The non-invasive nature of sEMG makes it a potentially useful technology for studying diseases of muscle and nerve. Reviews published by the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM) and the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology (AAN), covering 1964-1994 and 1952-1998, respectively, concluded that sEMG adds no clinical utility over conventional needle EMG (nEMG) for the diagnosis of neuromuscular disease. The AANEM sEMG task force reevaluated the diagnostic utility and added value of this technology for the study of neuromuscular disease based on a contemporary review of relevant literature published between January 1994 and February 2006. The present review concludes that sEMG may be useful to detect the presence of neuromuscular disease (level C rating, class III data), but there are insufficient data to support its utility for distinguishing between neuropathic and myopathic conditions or for the diagnosis of specific neuromuscular diseases. sEMG may be useful for additional study of fatigue associated with post-poliomyelitis syndrome and electromechanical function in myotonic dystrophy (level C rating, class III data).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.21055 | DOI Listing |
J Muscle Res Cell Motil
January 2025
Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford, OX3 7TY, UK.
Recent years have seen enormous progress in the field of advanced therapeutics for the progressive muscle wasting disease Duchenne muscular dystrophy (DMD). In particular, four antisense oligonucleotide (ASO) therapies targeting various DMD-causing mutations have achieved FDA approval, marking major milestones in the treatment of this disease. These compounds are designed to induce alternative splicing events that restore the translation reading frame of the dystrophin gene, leading to the generation of internally-deleted, but mostly functional, pseudodystrophin proteins with the potential to compensate for the genetic loss of dystrophin.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China.
Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (HS) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA.
Objective: The objective of this study was to analyze available evidence on efficacy and safety of sugammadex in reversing neuromuscular blockades in patients with Myasthenia Gravis (MG), thereby providing a comprehensive understanding of its potential benefits and risks in this specific patient population.
Methods: We performed a systematic search for studies from PubMed, Embase, Web of Science, and Google Scholar. Sources were screened using Rayyan, following predefined inclusion and exclusion criteria focusing on English articles published from 2010 to 2024 on MG patients under general anesthesia.
Front Neurol
January 2025
Department of Neurology, Wuhan No. 1 Hospital, Wuhan, China.
Introduction/aims: Myasthenia Gravis (MG) is a common neuromuscular junction disorder that is primarily mediated by anti-acetylcholine receptor antibodies (AChR-Ab). However, using AChR-Ab titers to predict MG severity and improvement remains controversial. This study aims to explore the relationship between AChR-Ab titers and AChR-Ab rate of change (RR-AChR-Ab, %) and MG scores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!