We have generated clones (L2.3 and RG3.6) of neural progenitors with radial glial properties from rat E14.5 cortex that differentiate into astrocytes, neurons, and oligodendrocytes. Here, we describe a different clone (L2.2) that gives rise exclusively to neurons, but not to glia. Neuronal differentiation of L2.2 cells was inhibited by bone morphogenic protein 2 (BMP2) and enhanced by Sonic Hedgehog (SHH) similar to cortical interneuron progenitors. Compared with L2.3, differentiating L2.2 cells expressed significantly higher levels of mRNAs for glutamate decarboxylases (GADs), DLX transcription factors, calretinin, calbindin, neuropeptide Y (NPY), and somatostatin. Increased levels of DLX-2, GADs, and calretinin proteins were confirmed upon differentiation. L2.2 cells differentiated into neurons that fired action potentials in vitro, and their electrophysiological differentiation was accelerated and more complete when cocultured with developing astroglial cells but not with conditioned medium from these cells. The combined results suggest that clone L2.2 resembles GABAergic interneuron progenitors in the developing forebrain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743477 | PMC |
http://dx.doi.org/10.1002/dneu.20679 | DOI Listing |
Cancer Res
January 2025
Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
Mouse models that faithfully represent the biology of human brain tumors are critical tools for unraveling the underlying tumor biology and screening for potential precision therapies. This is especially true of rare tumor types, many of which have correspondingly few xenograft or cell lines available. Although our understanding of the specific biological pathways driving cancer has improved significantly, identifying the appropriate progenitor populations to drive oncogenic processes represents a significant barrier to efficient mouse model production.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.
Bipolar cells are vertebrate retinal interneurons conveying signals from rod and cone photoreceptors to amacrine and ganglion cells. Bipolar cells are found in all vertebrates and have many structural and molecular affinities with photoreceptors; they probably appeared very early during vertebrate evolution in conjunction with rod and cone progenitors. There are two types of bipolar cells, responding to central illumination with depolarization (ON) or hyperpolarization (OFF).
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
During development, early regionalization segregates lineages and directs diverse cell fates. Sometimes, however, distinct progenitors produce analogous cell types. For example, V2a neurons, are excitatory interneurons that emerge from different anteroposterior progenitors.
View Article and Find Full Text PDFCurr Opin Neurobiol
December 2024
Department of Translational Neuroscience - University Medical Centre Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands. Electronic address:
A limiting step of neuronal circuit formation is the extensive migration of interneurons from their birthplace to populate territories formed by excitatory neurons. Interneuron dynamics in the developing brain culminates with the organization of interneuron subtypes in specific configurations within layers of brain tissue. Decoding the logic behind these configurations is still matter of passionate debate.
View Article and Find Full Text PDFCancer Res
January 2025
Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada.
Central nervous system neuroblastoma with forkhead box R2 (FOXR2) activation (NB-FOXR2) is a high-grade tumor of the brain hemispheres and a newly identified molecular entity. Tumors express dual neuronal and glial markers, leading to frequent misdiagnoses, and limited information exists on the role of FOXR2 in their genesis. To identify their cellular origins, we profiled the transcriptomes of NB-FOXR2 tumors at the bulk and single-cell levels and integrated these profiles with large single-cell references of the normal brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!