Thermostability and molecular encapsulation within an engineered caged protein scaffold.

Biotechnol Bioeng

Department of Chemical Engineering and Materials Science, University of California, 916 Engineering Tower, Irvine, California 92697-2575, USA.

Published: November 2008

Self-assembling biological complexes such as viral capsids have been manipulated to function in innovative nanotechnology applications. The E2 component of pyruvate dehydrogenase from Bacillus stearothermophilus forms a dodecahedral complex and potentially provides another platform for these purposes. In this investigation, we show that this protein assembly exhibits unusual stability and can be modified to encapsulate model drug molecules. To distill the E2 protein down to its structural scaffold core, we synthesized a truncated gene optimized for expression in Escherichia coli. The correct assembly and dodecahedral structure of the resulting scaffold was confirmed with dynamic light scattering and transmission electron microscopy. Using circular dichroism and differential scanning calorimetry, we found the thermostability of the complex to be unusually high, with an onset temperature of unfolding at 81.1 +/- 0.9 degrees C and an apparent midpoint unfolding temperature of 91.4 +/- 1.4 degrees C. To evaluate the potential of this scaffold for encapsulation of guest molecules, we made variants at residues 381 and 239 which altered the physicochemical properties of the hollow internal cavity. These mutants, yielding 60 and 120 mutations within this cavity, assembled into the correct architecture and exhibited high thermostability that was comparable to the wild-type scaffold. To show the applicability of this scaffold, two different fluorescent dye molecules were covalently coupled to the cysteine mutant at site 381. We demonstrate that these mutations can introduce non-native functionality and enable molecular encapsulation within the cavity while still retaining the dodecahedral structure. The unusually robust nature of this scaffold and its amenability to internal changes reveal its potential for nanoscale applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.21988DOI Listing

Publication Analysis

Top Keywords

molecular encapsulation
8
dodecahedral structure
8
+/- degrees
8
scaffold
7
thermostability molecular
4
encapsulation engineered
4
engineered caged
4
caged protein
4
protein scaffold
4
scaffold self-assembling
4

Similar Publications

Isolation of Viral Biofilms From HTLV-1 Chronically Infected T Cells and Integrity Analysis.

Bio Protoc

December 2024

Infectious Disease Research Institute of Montpellier (IRIM), UMR 9004 CNRS, University of Montpellier, Montpellier, France.

The human T-lymphotropic virus type-1 (HTLV-1) is an oncogenic retrovirus that predominantly spreads through cell-to-cell contact due to the limited infectivity of cell-free viruses. Among various modes of intercellular transmission, HTLV-1 biofilms emerge as adhesive structures, polarized at the cell surface, which encapsulate virions within a protective matrix. This biofilm is supposed to facilitate simultaneous virion delivery during infection.

View Article and Find Full Text PDF

In the present study, biopolymer (chitosan and alginate)-reinforced rhamnolipid nanoparticles were prepared and represented as 'ALG-RHLP-NPs' and 'CHI-RHLP-NPs'. The sizes of the nanoparticles ranged from 150 to 300 nm. The encapsulation efficiencies of ALG-RHLP-NPs and CHI-RHLP-NPs were found to be 81.

View Article and Find Full Text PDF

Cardiac tissue regeneration by microfluidic generated cardiac cell-laden calcium alginate microgels and mesenchymal stem cell extracted exosomes on myocardial infarction model.

Int J Biol Macromol

December 2024

Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:

Regenerative medicine is one of the effective approaches for myocardial infarcted (MI) tissue due to the low capacity of heart for regeneration. However, cell therapy with local administration has shown poor cell retention in the targeted area and limited engraftment capacity at the intended location, resulting in inadequate tissue regeneration. The present study involves mesenchymal stem cell-derived exosomes and encapsulated cells in small and injectable calcium alginate microgels by a specialized microfluidic device to decrease inflammation and increase cell retention in the infarcted tissue.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) play crucial roles in numerous biological processes and are involved in complex human diseases through interactions with proteins. Accurate identification of lncRNA-protein interactions (LPI) can help elucidate the functional mechanisms of lncRNAs and provide scientific insights into the molecular mechanisms underlying related diseases. While many sequence-based methods have been developed to predict LPIs, efficiently extracting and effectively integrating potential feature information that reflects functional attributes from lncRNA and protein sequences remains a significant challenge.

View Article and Find Full Text PDF

Carboxysomes: The next frontier in biotechnology and sustainable solutions.

Biotechnol Adv

December 2024

Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia. Electronic address:

Some bacteria possess microcompartments that function as protein-based organelles. Bacterial microcompartments (BMCs) sequester enzymes to optimize metabolic reactions. Several BMCs have been characterized to date, including carboxysomes and metabolosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!