Sporadic ovarian cancer is a particularly aggressive tumor characterized by highly abnormal karyotypes exhibiting many features of genomic instability. More complex genomic changes in tumors arise as a consequence of chromosomal instability (CIN), which can generate both numerical [(N)-CIN] and structural chromosomal instability [(S)-CIN]. In this study, molecular cytogenetic analysis was used to evaluate the relative levels of both (N)-CIN and (S)-CIN. Six tumors had a near-diploid chromosome number, two were near-tetraploid, and two were near-triploid. (N)-CIN levels increased as a function of overall tumor genomic content, with near-diploid tumors exhibiting numerical instability indices ranging from 7.0 to 21.0 and near-tetraploid and triploid tumors exhibiting instability indices ranging from 24.9 to 54.9. In contrast, the extent of (S)-CIN was generally more evident in the diploid tumors compared with the near-tetraploid tumors. To determine whether the associated chromosomal constitution and/or ploidy changes were influenced by mitotic segregation errors, centrosome analyses were performed on all 10 tumors. The near-diploid tumors, with the lowest numerical change, were observed to possess fewer cells with centrosome abnormalities (5.5% to 14.0%), whereas the near-tetraploid tumors possessed much higher levels of (N)-CIN and were characterized by a trend of elevating percentages of cells with abnormal centrosomes (16.0% to 20.5%). These observations suggest that two distinct processes governing genome stability may be disrupted in ovarian cancer: those that impact on numerical segregation and ploidy of chromosomes and those that affect the fidelity of DNA repair and lead to structural aberrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2546587 | PMC |
http://dx.doi.org/10.1593/neo.08584 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!