Glioblastomas often show activation of epidermal growth factor receptor (EGFR) and loss of PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor, but it is not known if these two genetic lesions act together to transform cells. To answer this question, we infected PTEN-/- neural precursor cells with a retrovirus encoding EGFRvIII, which is a constitutively activated receptor. EGFRvIII PTEN-/- cells formed highly mitotic tumors with nuclear pleomorphism, necrotic areas, and glioblastoma markers. The transformed cells showed increased cell proliferation, centrosome amplification, colony formation in soft agar, self-renewal, expression of the stem cell marker CD133, and resistance to oxidative stress and ionizing radiation. The RAS/mitogen-activated protein kinase (ERK) and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathways were activated, and checkpoint kinase 1 (Chk1), the DNA damage regulator, was phosphorylated at S280 by Akt, suppressing Chk1 phosphorylation at S345 in response to ionizing irradiation. The PTEN-/- cells showed low levels of DNA damage in the absence of irradiation, which was increased by EGFRvIII expression. Finally, secondary changes occurred during tumor growth in mice. Cells from these tumors showed decreased tumor latencies and additional chromosomal aberrations. Most of these tumor lines showed translocations of mouse chromosome 15. Intracranial injections of one of these lines led to invasive, glial fibrillary acidic protein-positive, nestin-positive tumors. These results provide a molecular basis for the occurrence of these two genetic lesions in brain tumors and point to a role in induction of genomic instability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718963PMC
http://dx.doi.org/10.1215/15228517-2008-081DOI Listing

Publication Analysis

Top Keywords

egfrviii expression
8
genetic lesions
8
pten-/- cells
8
dna damage
8
cells
6
tumors
5
egfrviii
4
expression pten
4
pten loss
4
loss synergistically
4

Similar Publications

Efficient Gene Delivery Admitted by small Metabolites Specifically Targeting Astrocytes in the Mouse Brain.

Mol Ther

January 2025

School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:

The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene Delivery approach Admitted by small Metabolites, named gDAM, for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM utilizes a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells.

View Article and Find Full Text PDF

Background: Bispecific T cell-engagers (BTEs) are engineered antibodies that redirect T cells to target antigen-expressing tumors. BTEs targeting various tumor-specific antigens, like interleukin 13 receptor alpha 2 (IL13RA2) and EGFRvIII, have been developed for glioblastoma (GBM). However, limited knowledge of BTE actions derived from studies conducted in immunocompromised animal models impedes progress in the field.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma multiforme (GBM) presents a challenge for treatment due to its antigenic variability, prompting researchers to develop multivalent immunotherapies that target multiple tumor antigens to improve effectiveness.
  • The study introduces a new class of antibodies called DNA-encoded tri-specific T-cell engagers (DTriTEs) that target two specific GBM antigens and engage T cells, showing promising in vitro and in vivo results.
  • The leading DTriTE construct, DT2035, not only significantly reduced tumor burden and improved survival rates in mouse models but also showed sustained expression and induced strong immune responses, making it a potential game-changer for GBM treatment.
View Article and Find Full Text PDF
Article Synopsis
  • Apoferritin-based systems are being researched for their potential use in vaccine delivery against viral diseases, offering benefits like enhanced stability and reduced side effects.
  • The study focuses on using a specific tumor antigen, EGFRvIII peptide, in combination with apoferritin to create a potentially effective peptide vaccine for cancer treatment.
  • The results indicate that varying the concentration of the peptide affects immune responses and antibody production, which is crucial for ensuring the safety and effectiveness of the vaccine formulation.
View Article and Find Full Text PDF

Expression features of targets for anti-glioma CAR-T cell immunotherapy.

J Neurooncol

January 2025

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China.

Objective: To investigate the expression features of common anti-glioma CAR-T targets (B7H3, CSPG4, EGFRv III, HER2 and IL-13Ra2) in gliomas with different grades and molecular subtypes, and explore the association of target expression with glioma malignant or immune phenotypes including immune evasion, stemness, antigen presentation, and tumor angiogenesis.

Methods: Opal™ Multiplex immunofluorescence staining was performed on glioma tissues to detect the expression of targets, and biomarkers related to the phenotypes.

Results: High variety of CAR-T target expression among glioma subtypes was observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!