Context: GNAS is an imprinted region that gives rise to several transcripts, antisense transcripts, and noncoding RNAs, including transcription of RNA encoding the alpha-subunit of the stimulatory G protein (Gsalpha). The complexity of the GNAS cluster results in ubiquitous genomic imprints, tissue-specific Gsalpha expression, and multiple genotype-phenotype relationships. Phenotypes resulting from genetic and epigenetic abnormalities of the GNAS region include Albright's hereditary osteodystrophy, pseudohypoparathyroidism types Ia (PHPIa) and Ib (PHPIb), and pseudopseudohypoparathyroidism (PPHP).
Objective: The aim was to study the complex GNAS pathology by a functional test as an alternative to the generally used but labor-intensive erythrocyte complementation assay.
Design And Patients: We report the first platelet-based diagnostic test for Gsalpha hypofunction, supported by clinical, biochemical, and molecular data for six patients with PHPIa or PPHP and nine patients with PHPIb. The platelet test is based on the inhibition of platelet aggregation by cAMP, produced after Gsalpha stimulation.
Results: Platelets are easily accessible, and platelet aggregation responses were found to reflect Gsalpha signaling defects in patients, in concordance with the patient's phenotype and genotype. Gsalpha hypofunction in PHPIa and PPHP patients with GNAS mutations was clearly detected by this method. Mildly decreased or normal Gsalpha function was detected in patients with PHPIb with either an overall or exon 1A-only epigenetic defect, respectively. Platelet Gsalpha expression was reduced in both PHPIb patient groups, whereas XLalphas was up-regulated only in PHPIb patients with the broad epigenetic defect.
Conclusion: The platelet-based test is a novel tool for establishing the diagnosis of Gsalpha defects, which may otherwise be quite challenging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jc.2008-0883 | DOI Listing |
Int J Mol Sci
November 2024
Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar.
(Guanine Nucleotide-Binding Protein, Alpha Stimulating) is a complex gene that encodes the alpha subunit of the stimulatory G protein (Gα), critical for signaling through various G protein-coupled receptors. Inactivating genetic and epigenetic changes in , resulting in Gα deficiency, cause different variants of pseudohypoparathyroidism, which may manifest features of Albright hereditary osteodystrophy (AHO, a syndrome characterized by early-onset obesity and other developmental defects). Recent findings have linked Gα deficiency with isolated, severe, early-onset obesity, suggesting it as a potential, underrecognized cause of monogenic, non-syndromic obesity.
View Article and Find Full Text PDFThe biosynthesis of cyclic 3',5'-adenosine monophosphate (cAMP) by mammalian membrane-bound adenylyl cyclases (mACs) is predominantly regulated by G-protein-coupled receptors (GPCRs). Up to now the two hexahelical transmembrane domains of mACs were considered to fix the enzyme to membranes. Here, we show that the transmembrane domains serve in addition as signal receptors and transmitters of lipid signals that control Gsα-stimulated mAC activities.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, AL9 7TA, UK.
Feline hyperthyroidism (FHT) is a debilitating disease affecting > 10% of elderly cats. It is generally characterised by chronic elevation of thyroid hormone in the absence of circulating TSH. Understanding of the molecular pathogenesis of FHT is currently limited.
View Article and Find Full Text PDFJCI Insight
December 2024
Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
Exp Clin Endocrinol Diabetes
September 2024
Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China.
Objective: Changes in postmenopausal hormone levels are associated with a variety of disorders. This study elucidated the mechanism by which follicle-stimulating hormone (FSH) increases cortisol production involved in development of menopause-related diseases.
Methods: The expression of FSH receptors (FSHRs) in murine adrenal zona fasciculata (AZF) cells and ATC7 cells was verified by immunofluorescence, western blotting and RT-PCR.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!