Human XPF controls TRF2 and telomere length maintenance through distinctive mechanisms.

Mech Ageing Dev

Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.

Published: October 2008

XPF-ERCC1, a structure-specific endonuclease, is involved in nucleotide excision repair, crosslink repair and homologous recombination. XPF-ERCC1 is also found to interact with TRF2, a duplex telomeric DNA binding protein. We have previously shown that XPF-ERCC1 is required for TRF2-promoted telomere shortening. However, whether XPF-ERCC1 by itself has a role in telomere length maintenance has not been determined. Here we report that overexpression of XPF induces telomere shortening in XPF-proficient cells whereas XPF complementation suppresses telomere lengthening in XPF-deficient cells. These results suggest that XPF-ERCC1 can function as a negative mediator of telomere length maintenance. In addition, we find that introduction of wild type XPF into XPF-deficient cells leads to over 40% reduction in TRF2 association with telomeric DNA, indicating that XPF-ERCC1 negatively regulates TRF2 binding to telomeric DNA. Furthermore, we show that XPF carrying mutations in the conserved nuclease domain fails to control TRF2 association with telomeric DNA but it is competent for modulating telomere length maintenance. These results imply that XPF-ERCC1 controls TRF2 and telomere length maintenance through two distinctive mechanisms, with the former requiring its nuclease activity. Our results further imply that TRF2 association with telomeres may be deregulated in cells derived from XPF patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mad.2008.08.004DOI Listing

Publication Analysis

Top Keywords

telomere length
20
length maintenance
20
telomeric dna
16
trf2 association
12
controls trf2
8
telomere
8
trf2 telomere
8
maintenance distinctive
8
distinctive mechanisms
8
telomere shortening
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!