Root systems have recognizable developmental plans when grown in solution or agar; however, these plans often must be modified to cope with the prevailing conditions in the soil environment such as the avoidance of obstacles and the exploitation of nutrient-rich patches or water zones. The modular structure of roots enables them to respond to their environment, and roots are very adaptive at modifying growth throughout the root system to concentrate their efforts in the areas that are the most profitable. Roots also form associations with microorganisms as a strategy to enhance resource capture. However, while the responses of roots in nutrient patches are well-recognized, overall 'rules of response' and variation in strategy among plant species that can be applied in a number of different environments are still lacking. Finally, there is increasing evidence that root-root interactions are much more sophisticated than previously thought, and the evidence for roots to identify self from non-self roots will be briefly discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-3040.2008.01891.x | DOI Listing |
Phytochem Anal
December 2024
College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Introduction: The roots and rhizomes of Curcuma longa L. serve as distinct traditional Chinese medicines with varying therapeutic effects, likely attributed to differences in the accumulation and distribution of metabolites in these parts.
Objective: The study aims to investigate the differences and spatial distribution patterns of metabolites in C.
Cureus
November 2024
Department of Orthodontics and Dentofacial Orthopedics, Government College of Dentistry, Indore, IND.
Objective Permanent teeth roots undergo resorption under pathologic conditions such as trauma, orthodontic treatment, pulpal infections, periodontitis, and periodontal therapy. The present study aimed to determine the prevalence of external root resorption (ERR) in patients with periodontitis as seen in orthopantomography (OPGs). Methodology This single-center, retrospective, cross-sectional radiographic study was conducted from January 2021 to December 2022, including 656 orthopantomographs (OPGs) from patients with periodontitis.
View Article and Find Full Text PDFJ Toxicol
December 2024
Ambo University, Guder Mamo Mezemir Campus, Department of Veterinary Science, West Shewa Zone, Oromia, Ethiopia.
Plants are important components in sustaining the life of humans and animals, balancing ecosystems, providing animal feed and edible food for human consumption, and serving as sources of traditional and modern medicine. However, plants can be harmful to both animals and humans when ingested, leading to poisoning regardless of the quantity consumed. This presents significant risks to livestock health and can impede economic growth.
View Article and Find Full Text PDFFront Comput Neurosci
December 2024
Department of Engineering and Architecture, Ghent University/IMEC, Ghent, Belgium.
Inspired by animal navigation strategies, we introduce a novel computational model to navigate and map a space rooted in biologically inspired principles. Animals exhibit extraordinary navigation prowess, harnessing memory, imagination, and strategic decision-making to traverse complex and aliased environments adeptly. Our model aims to replicate these capabilities by incorporating a dynamically expanding cognitive map over predicted poses within an active inference framework, enhancing our agent's generative model plasticity to novelty and environmental changes.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain.
Arbuscular mycorrhiza (AM) represents a symbiotic mutualistic association between most land plants and fungi. AM fungi develops specialized intraradical and highly branched structures, called arbuscules, where bidirectional exchange of nutrients between plant and fungi partners occurs, improving plant growth and fitness. Transcriptional reprogramming and hormonal regulation are necessary for the formation of the arbuscules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!