L-rhamnose-binding lectins (RBLs) have been isolated from various kinds of fish and invertebrates and interact with various kinds of bacteria, suggesting RBLs are involved in various inflammatory reactions. We investigated the effect of RBLs from chum salmon (Oncorhynchus keta), named CSL1, 2 and 3, on the peritoneal macrophage cell line from rainbow trout (Oncorhynchus mykiss) (RTM5) and an established fibroblastic-like cell line derived from gonadal tissue of rainbow trout (RTG-2). CSLs were bound to the surface of RTM5 and RTG-2 cells and induced proinflammatory cytokines, including IL-1beta1, IL-1beta2, TNF-alpha1, TNF-alpha2 and IL-8 in both cells by recognizing globotriaosylceramide (Gb3). In addition, CSLs had an opsonic effect on RTM5 cells and this effect was significantly inhibited by L-rhamnose, indicating that CSLs enhanced their phagocytosis by binding to Gb3 on cell surfaces. This is the first finding that Gb3 plays a role in innate immunity by cooperating with natural ligands, RBLs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dci.2008.08.008 | DOI Listing |
Acta Biochim Biophys Sin (Shanghai)
January 2025
International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China.
Relieving hypoxia in the tumor microenvironment (TME) promotes innate and adaptive immunity. Our previous research demonstrated that reoxygenation of the TME promotes the phagocytosis and tumor-killing functions of tumor-associated macrophages (TAMs) by upregulating pyruvate carboxylase (PCB). However, the mechanism remains obscure.
View Article and Find Full Text PDFViruses
January 2025
Center for Virus-Host-Innate-Immunity, Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
The type I interferon (IFN-I) response is a critical component of the immune defense against various viral pathogens, triggering the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs encode proteins with diverse antiviral functions, targeting various stages of viral replication and restricting infection spread. Beyond their antiviral functions, ISGs and associated immune metabolites have emerged as promising broad-spectrum biomarkers that can differentiate viral infections from other conditions.
View Article and Find Full Text PDFViruses
January 2025
Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany.
The first marine pestivirus, Phocoena pestivirus (PhoPeV), isolated from harbor porpoise, has been recently described. To further characterize this unique pestivirus, its host cell tropism and growth kinetics were determined in different cell lines. In addition, the interaction of PhoPeV with innate immunity in porcine epithelial cells and the role of selected cellular factors involved in the viral entry and RNA replication of PhoPeV were investigated in comparison to closely and distantly related pestiviruses.
View Article and Find Full Text PDFViruses
January 2025
Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland.
Bacteriophages, as ubiquitous bacterial viruses in various natural ecosystems, play an important role in maintaining the homeostasis of the natural microbiota. For many years, bacteriophages were not believed to act on eukaryotic cells; however, recent studies have confirmed their ability to affect eukaryotic cells and interact with the host immune system. Due to their complex protein structure, phages can also directly or indirectly modulate immune processes, including innate immunity, by modulating phagocytosis and cytokine reactions, as well as acquired immunity, by producing antibodies and activating effector cells.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
The Rift Valley fever virus (RVFV) causes haemorrhagic fever, encephalitis, and permanent blindness and has been listed by the WHO as a priority pathogen. To study RVFV pathogenesis and identify small-molecule antivirals, we established a novel In Vivo model using zebrafish larvae. Pericardial injection of RVFV resulted in ~4 log viral RNA copies/larva, which was inhibited by the antiviral 2'-fluoro-2'-deoxycytidine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!