Degradation of a mixture of three reactive textile dyes (Reactive Black 5, Reactive Yellow 15 and Reactive Red 239), simulating a real textile effluent, by commercial laccase, was investigated in a batch reactor. The discoloration was appraised as a percentage of the absorbance reduction at the wavelength of maximum absorbance for each dye and as total color removal based in all visible spectrum. A significantly high discoloration was achieved in both cases, indicating the applicability of this method for textile wastewater treatment. Mathematical models were developed to simulate the kinetics of laccase catalyzed degradation of reactive dyes in mixtures. Like in single dye degradation, some of the reactions present an unusual kinetic behavior, corresponding to the activation of the laccase-mediator system. The kinetic constants of the models were estimated by minimizing the difference between the predicted and the experimental time courses. Although not perfect, the ability of the models in representing the experimental results suggests that they could be used in design and simulation applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2008.08.007 | DOI Listing |
Antioxidants (Basel)
November 2024
Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
is a low-molecular weight, non-aromatic reagent, widely used in industry, such as in the manufacture of paper, textiles, plastics, cosmetics, and dyes. ACR is formed during the cooking of starchy food and its toxicity results mainly by conferring oxidative stress by elevating reactive oxygen species (ROS). To identify potential antidotes for ACR toxicity, we evaluated the efficacy of several thiol-based molecules known for ROS-scavenging, disulfide-reducing properties, and inhibition of oxidative stress-induced activation of the mitogen-activated protein kinases (MAPKs): the extracellular-signal-regulated-kinases (ERK1/2), p38-mitogen-activated-protein-kinases (p38), and c-Jun-N-terminal-kinases (JNKs).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, College of Basic Sciences, Yadegar-E-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
This study presents the development and characterization of manganese ferrite (MnFeO)-based nanocomposites with graphite oxide (GO) and chitosan (CS) for efficient dye removal from textile wastewater and aqueous solution. Comprehensive characterization was performed using FT-IR, Raman, XRD, BET, SEM, DRS and Zeta potential techniques. XRD analysis confirmed the cubic spinel structure of MnFeO, with characteristic peaks at 2θ = 32, 35, 48, 53, 62, and 64°.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Petrochemical Engineering Department, Faculty of Engineering, Pharos University, Alexandria, Egypt. Electronic address:
Textile materials are extensively used due to their advantageous properties; however, their inherent flammability presents significant safety risks, particularly in residential and historical settings. To mitigate these risks, the integration of flame-retardant agents into textile fabrics is essential for enhancing fire resistance and advancing sustainable development. In this study, cotton-polyester fabrics were treated with a flame-retardant composite containing nano graphene oxide (NGO), sodium hypophosphite dihydrate (SHFDH), and lignin (L).
View Article and Find Full Text PDFCarbohydr Res
December 2024
Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT Deemed to Be University), Vellore, Tamil Nadu, India. Electronic address:
Pectate lyases, known for their alkaliphilic nature, are ideal for industrial applications that require specific pH conditions, particularly in industries such as textiles and pulp extraction. These enzymes, primarily from the polysaccharide lyase family 1 (PL1) of different microbial sources, play a vital role in polysaccharide degradation. Given the potent pectinolytic activity of Bacillus pectate lyases, targeting these enzymes is crucial for identifying the most effective candidates.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610054, China.
Despite being a groundbreaking approach to treating colorectal cancer (CRC), the efficacy of immunotherapy is significantly compromised by the immunosuppressive tumor microenvironment and dysbiotic intestinal microbiota. Here, leveraging the superior carrying capacity and innate immunity-stimulating property of living bacteria, a nanomedicine-engineered bacterium, LR-S-CD/CpG@LNP, with optical responsiveness, immune-stimulating activity, and the ability to regulate microbiota metabolome is developed. Immunoadjuvant (CpG) and carbon dot (CD) co-loaded plant lipid nanoparticles (CD/CpG@LNPs) are constructed and conjugated to the surface of Limosilactobacillus reuteri (LR) via reactive oxygen species (ROS)-responsive linkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!