Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Predicting a protein's structural or functional class from its amino acid sequence or structure is a fundamental problem in computational biology. Recently, there has been considerable interest in using discriminative learning algorithms, in particular support vector machines (SVMs), for classification of proteins. However, because sufficiently many positive examples are required to train such classifiers, all SVM-based methods are hampered by limited coverage.
Results: In this study, we develop a hybrid machine learning approach for classifying proteins, and we apply the method to the problem of assigning proteins to structural categories based on their sequences or their 3D structures. The method combines a full-coverage but lower accuracy nearest neighbor method with higher accuracy but reduced coverage multiclass SVMs to produce a full coverage classifier with overall improved accuracy. The hybrid approach is based on the simple idea of "punting" from one method to another using a learned threshold.
Conclusion: In cross-validated experiments on the SCOP hierarchy, the hybrid methods consistently outperform the individual component methods at all levels of coverage. Code and data sets are available at http://noble.gs.washington.edu/proj/sabretooth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561051 | PMC |
http://dx.doi.org/10.1186/1471-2105-9-389 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!