Water and nutrient are the two main factors limiting Hevea brasiliensis growth and its latex yield. With 17 year-old Clone SCATC 7-33-97 H. brasiliensis as test material, the coupling effects of water and chemical N, P and K fertilizers on latex yield were studied by general orthogonal rotation design of quadratic regression with four factors and five levels under field condition, and a regressive mathematical model was set up based on the latex yield by quadratic regression analysis. The results showed that all test coupling levels of water and chemical fertilizers had significant effects on the latex yield. The yield-increasing effect of test factors was in the order of N application rate > irrigation amount > P application rate > K application rate, while the coupling effect of water and chemical fertilizers was in the sequence of water and N > N and P > water and P > water and K. There was a negative coupling effect of K application rate and soil moisture content. For latex yield, the optimum application rates of chemical fertilizers were 476.39 kg x hm(-2) of urea, 187.70 kg x hm(-2) of superphosphate and 225.77 kg x hm(-2) of potassium chloride, and the optimum irrigation amount was to have 82.78% soil relative water content.
Download full-text PDF |
Source |
---|
Environ Sci Pollut Res Int
January 2025
Department of International Trade and Business, Faculty of Economics and Administrative Sciences, Inonu University, 44000, Malatya, Turkey.
Import demand elasticity (IDE) is a critical metric often employed to guide government decisions regarding tariffs and non-tariff barriers, ensuring that foreign trade remains uninterrupted while optimizing tax revenues. This study, however, leverages IDE to assess the impact of the carbon border adjustment mechanism (CBAM) on Türkiye's decarbonization process. Specifically, the research analyzed the total export quantities and unit prices of four product groups-cement, fertilizers, and inorganic chemicals, steel and iron, and aluminum-exported from Türkiye to the European Union-27 countries under the CBAM framework between 2002 and 2021.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Agriculture, University of Guangxi, Nanning, China.
China is the largest producer and consumer of tobacco ( L.) in the world, and the cultivation and production of tobacco have extremely high economic value and social influence. Applying organic-inorganic fertilizer is a key strategy for boosting tobacco yield and quality.
View Article and Find Full Text PDFBiotechnol Rep (Amst)
March 2025
Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, University of Malaya, Jalan Pantai Baharu, Kuala Lumpur, 59990, Malaysia.
The increasing need for sustainable agricultural practices due to the overuse of chemical fertilizers has prompted interest in microalgae as biofertilizers. This review investigates the potential of microalgae as biofertilizers and phycoremediators within sustainable agroecosystems, addressing both soil fertility and wastewater management. Microalgae provide a dual benefit by absorbing excess nutrients and contaminants from wastewater, generating nutrient-rich biomass that can replace chemical fertilizers and support plant growth.
View Article and Find Full Text PDFHeliyon
January 2025
Institute for Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
Calcite (CaCO), a common component of calcium-based fertilizers, has been recognized for its effectiveness as a cadmium (Cd) immobilization agent in the solidification/stabilization (S/S) method. This strategy is a widely used chemical remediation technique aimed at reducing the bioavailability and toxicity of Cd in contaminated soils. This study comprehensively evaluated the potential of calcite for Cd remediation through geochemical analyses, including adsorption isotherms, saturation index, ion concentration changes, and X-ray diffraction (XRD) analysis.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Molecular Biology and Biotechnology, University of Dar-es-salaam, Tanzania.
Sustainable agricultural practices are essential to meet food demands for the increased population while minimizing the environmental impact. Considering rice as staple food for most of the world's population, it requires innovative approaches to ensure sustainable production. In this paper, we create a hypothesis that integrated nutrient management (INM) acts as a source of energy for microbes and improves the physical, chemical and biological properties of soils, but the current understanding of how soil microbiomes interact in integrated nutrient management toward mediating climate stress to support sustainable rice crop production is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!