In this study, we investigated the neuroprotective effect of a benzylideneacetophenone derivative, JC3, in a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD). C57BL/6 mice were treated with MPTP (30 mg/kg, i.p.) for 5 consecutive days. JC3 (10 mg/kg, i.p.) treatment was initiated 2 h after the first administration of MPTP and then at 24-h intervals for 3 consecutive days. The mice were sacrificed for analyses 7 days after the last MPTP injection. Immunohistochemistry and Western blot were used to determine the expression levels of tyrosine hydroxylase (TH), dopamine transporter (DAT), OX-42 (a marker of microglial activation), and glial fibrillary acid protein (GFAP, a marker of astrocyte activation) in the substantia nigra (SN) and striatum (ST). The results of these experiments demonstrated that JC3 restored the decreased TH-immunoreactivity (IR) and DAT and JC3 attenuated the increase in OX-42, GFAP, and COX-2 on the SN and ST on day 7 post-MPTP injection. These results suggest that JC3 can be a neuroprotective agent in an MPTP-induced model of PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12272-001-1275-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!