Background: Hypertension and diastolic heart failure are two common cardiovascular diseases that inflict heavy morbidity and mortality, yet relatively little is understood about their pathophysiology. The identification of quantitative trait loci for blood pressure is important in unveiling the causes of polygenic hypertension. Although Dahl salt-sensitive strain is also an excellent model for the study of diastolic heart failure, virtually nothing is known about the quantitative trait loci determining diastolic heart failure. Diastolic dysfunction often represents the onset of diastolic heart failure.
Methods: We first characterized the cardiac phenotype of Dahl salt-sensitive strain and normotensive Lewis control rats by echocardiography to ascertain diastolic function. We then analyzed corresponding features of four newly developed and two existing congenic strains, each of which carries a specific chromosome substitution of Dahl salt-sensitive strain by its Lewis homologue and each lowering blood pressure.
Results: Dahl salt-sensitive strain displayed diastolic dysfunction that was rectified in two of six congenic strains, designated as positive congenic strains, which represent the first rodent models exhibiting functional normalization of diastolic dysfunction caused by naturally occurring genetic variants. The two positive congenic strains also showed a reduction in left ventricular mass. In contrast, four of six congenic strains did not change diastolic function despite their blood pressure-lowering effects.
Conclusion: Genes present in the replaced chromosome segments of the two positive congenic strains are not commonly known to affect blood pressure, diastolic function or left ventricular mass. Consequently, novel prognostic, diagnostic and therapeutic strategies for hypertensive diastolic heart failure likely emerge from this work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/HJH.0b013e32830a9a5e | DOI Listing |
Exp Anim
December 2024
Division of Experimental Animals, Graduate School of Medicine, Nagoya University.
Streptozotocin (STZ) is widely used as a pancreatic beta-cell toxin to induce experimental diabetes in rodents. Strain-dependent variations in STZ-induced diabetes susceptibility have been reported in mice. Differences in STZ-induced diabetes susceptibility are putatively related to pancreatic beta-cell fragility via DNA damage response.
View Article and Find Full Text PDFInfect Genet Evol
December 2024
Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, N18 W9, Kita-Ku, Sapporo, Hokkaido 060-0819, Japan.
Alveolar echinococcosis is a zoonosis caused by the larval stage of Echinococcus multilocularis. In previous studies, QTL analysis using C57BL/6 N (B6) and DBA/2 (D2) which differ in susceptibility suggested the presence of genes on chromosome 1 that control protoscolex development. In this study, we constructed several congenic mice with different chromosome 1 regions substituted to confirm the presence of responsible genes and to narrow down the regions where the responsible genes exist.
View Article and Find Full Text PDFHorm Metab Res
October 2024
Department of Pathology, State University of Campinas (UNICAMP), Campinas, Brazil.
Objective: To determine the downstream effects on ovarian function and immune cell differentiation in the ovary and uterus using a model in which RGS2 was knocked out specifically in CD4+ T cells.
Design: Laboratory based experiments with female mice.
Animals: Female congenic (fully backcrossed) and non-congenic (mixed strain) mice with CD4 T cell-specific RGS2 knockout.
Biology (Basel)
October 2024
Division of Clinical Chemistry and Pharmacology (KKF), Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden.
To demonstrate causation or/and assess pathogenic mechanisms of environment-induced autoimmunity, various animal models that mimic the characteristics of the human autoimmune diseases need to be developed. Experimental studies in mice reveal the genetic factors that contribute to autoimmune diseases. Here, the immune response of two mouse strains congenic for non-H-2 genes, A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!