A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Causes and consequences of zinc dyshomeostasis in rats with chronic aldosteronism. | LitMetric

Iterations in Ca2+ and Mg2+ balance accompany aldosteronism (inappropriate for dietary Na+ intake). Increased Zn excretion and Zn translocation to injured tissues, including the heart, also occurs. Several causes and consequences of Zn dyshomeostasis in rats receiving aldosterone/salt treatment (ALDOST) were examined. (1) To study the role of urinary acidification in promoting hyperzincuria, acetazolamide (75 mg/kg), a carbonic anhydrase inhibitor, was used as cotreatment to raise urinary HCO3 excretion. (2) To assess Zn levels in the heart, including cardiomyocyte cytosolic free [Zn2+]i and mitochondrial Zn, the expression of metallothionein (MT-I), a Zn binding protein, and biomarkers of oxidative stress were examined. (3) Oxidative stress and cardiac pathology in response to ZnSO4 supplement (40 mg/d) were also studied. Comparison of controls and rats receiving 4 weeks ALDOST revealed the following: (1) an acidification of urine and metabolic alkalosis associated with increased urinary Zn excretion and hypozincemia, each of which were prevented by acetazolamide; (2) a rise in cardiac Zn, including increased [Zn2+]i and mitochondrial Zn, associated with increased tissue MT-I, 8-isoprostane, malondialdehyde, and gp91(phox), coupled with oxidative stress in plasma and urine; (3) ZnSO4 prevented hypozincemia, but not ionized hypocalcemia, and attenuated oxidative stress and microscopic scarring without preventing the vasculitis and perivascular fibrosis of intramural coronary arteries. Thus, the hyperzincuria seen with ALDOST is due to urinary acidification. The oxidative stress that appears in the heart is accompanied by increased tissue Zn serving as an antioxidant. Cotreatment with ZnSO4 attenuated cardiomyocyte necrosis; however, polynutrient supplement may be required to counteract the dyshomeostasis of all 3 cations that accompanies aldosteronism and contributes to cardiac pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692610PMC
http://dx.doi.org/10.1097/FJC.0b013e3181833eb8DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
dyshomeostasis rats
8
rats receiving
8
urinary acidification
8
[zn2+]i mitochondrial
8
cardiac pathology
8
associated increased
8
increased tissue
8
increased
5
oxidative
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!