Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Research on computer interpretable clinical guidelines has largely focused on individual points of care rather than processes of care. Whether we consider simple aids like clinical alerts and reminders or more sophisticated data interpretation and decision-making, guideline developers tend to focus on specific tasks rather than processes like care plans and pathways which are extended in time. In contrast, research on business process modelling has demonstrated notations and tools which deal directly with process modelling, but has not been concerned with problems like data interpretation and decision making. In this chapter we describe these two traditions, and compare some of their strengths and weaknesses. We also briefly discuss the distinct theoretical frameworks which have grown up around them, notably Petri nets for workflow modelling and mathematical logics for guidelines. We conclude that these offer complementary views of clinical processes and that a key research challenge is find a way of unifying them.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!