Insulin secretion is highly sensitive to desorption of plasma membrane cholesterol.

FASEB J

Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, CRC 91-11, UMAS entrance 72, 205 02 Malmö, Sweden.

Published: January 2009

Cholesterol-rich clusters of SNARE (soluble NSF attachment protein receptor) proteins have been implicated as being important for exocytosis. Here we demonstrate the significance of cholesterol for normal biphasic insulin secretion in mouse beta cells by removal of cholesterol from the plasma membrane using methyl-beta-cyclodextrin (MBCD). Maximal inhibition of insulin secretion in static incubations was achieved using 0.1 mM MBCD. In in situ pancreatic perfusion measurements, both first and second phase insulin secretions were reduced by approximately 50% (P<0.05). This was accompanied by a reduced number of docked large dense core vesicles (LDCVs) (approximately 40%; P<0.01) and a reduced exocytotic response (>50%; P<0.01). Further, subcellular fractionations demonstrated movement of the synaptosomal protein of 25 kDa (SNAP-25) from the plasma membrane to the cytosol after MBCD treatment. The inhibitory actions of MBCD were counteracted by subsequent addition of cholesterol. We hypothesize that desorption of cholesterol leads to the disturbance of a basic exocytotic mechanism partly due to migration of SNAP-25, and we conclude that insulin secretion is highly sensitive to changes in plasma membrane cholesterol.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.08-105734DOI Listing

Publication Analysis

Top Keywords

insulin secretion
12
plasma membrane
8
insulin
4
secretion highly
4
highly sensitive
4
sensitive desorption
4
desorption plasma
4
membrane cholesterol
4
cholesterol cholesterol-rich
4
cholesterol-rich clusters
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!