The synthetic genetic network around PKC1 identifies novel modulators and components of protein kinase C signaling in Saccharomyces cerevisiae.

Eukaryot Cell

Molecular Genetics and Integrative & Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Anderson College Complex, Glasgow G11 6NU, United Kingdom.

Published: November 2008

Budding yeast Saccharomyces cerevisiae contains one protein kinase C (PKC) isozyme encoded by the essential gene PKC1. Pkc1 is activated by the small GTPase Rho1 and plays a central role in the cell wall integrity (CWI) signaling pathway. This pathway acts primarily to remodel the cell surface throughout the normal life cycle and upon various environmental stresses. The pathway is heavily branched, with multiple nonessential branches feeding into and out of the central essential Rho1-Pkc1 module. In an attempt to identify novel components and modifiers of CWI signaling, we determined the synthetic lethal genetic network around PKC1 by using dominant-negative synthetic genetic array analysis. The resulting mutants are hypersensitive to lowered Pkc1 activity. The corresponding 21 nonessential genes are closely related to CWI function: 14 behave in a chemical-genetic epistasis test as acting in the pathway, and 6 of these genes encode known components. Twelve of the 21 null mutants display elevated CWI reporter activity, consistent with the idea that the pathway is activated by and compensates for loss of the gene products. Four of the 21 mutants display low CWI reporter activity, consistent with the idea that the pathway is compromised in these mutants. One of the latter group of mutants lacks Ack1(Ydl203c), an uncharacterized SEL-1 domain-containing protein that we find modulates pathway activity. Epistasis analysis places Ack1 upstream of Pkc1 in the CWI pathway and dependent on the upstream Rho1 GTP exchange factors Rom2 and Tus1. Overall, the synthetic genetic network around PKC1 directly and efficiently identifies known and novel components of PKC signaling in yeast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583532PMC
http://dx.doi.org/10.1128/EC.00222-08DOI Listing

Publication Analysis

Top Keywords

synthetic genetic
12
genetic network
12
network pkc1
12
identifies novel
8
protein kinase
8
saccharomyces cerevisiae
8
cwi signaling
8
pathway
8
novel components
8
mutants display
8

Similar Publications

Exogenous dsRNA triggers sequence-specific RNAi and fungal stress responses to control Magnaporthe oryzae in Brachypodium distachyon.

Commun Biol

January 2025

Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.

In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.

View Article and Find Full Text PDF

Cell-free systems: A synthetic biology tool for rapid prototyping in metabolic engineering.

Biotechnol Adv

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea. Electronic address:

Microbial cell factories provide sustainable alternatives to petroleum-based chemical production using cost-effective substrates. A deep understanding of their metabolism is essential to harness their potential along with continuous efforts to improve productivity and yield. However, the construction and evaluation of numerous genetic variants are time-consuming and labor-intensive.

View Article and Find Full Text PDF

The exogenous application of RNAi technology offers new promises for crops improvement. Cell-based or synthetically produced strands are economical, non-transgenic and could induce the same responses. The substantial population growth demands novel strategies to produce crops without further damaging the environment.

View Article and Find Full Text PDF

Collagen, a major component of the extracellular matrix, is crucial for the structural integrity of the Caenorhabditis elegans cuticle. While several proteins involved in collagen biosynthesis have been identified, the complete regulatory network remains unclear. This study investigates the role of CALU-1, an ER-resident calcium-binding protein, in cuticle collagen formation and maintenance.

View Article and Find Full Text PDF

De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!