Temporal assessment of the impact of exposure to cow feces in two watersheds by multiple host-specific PCR assays.

Appl Environ Microbiol

National Research Council Research Associateship Programs, U.S. Environmental Protection Agency, Athens, Georgia 306051, USA.

Published: November 2008

Exposure to feces in two watersheds with different management histories was assessed by tracking cattle feces bacterial populations using multiple host-specific PCR assays. In addition, environmental factors affecting the occurrence of these markers were identified. Each assay was performed using DNA extracts from water and sediment samples collected from a watershed directly impacted by cattle fecal pollution (WS1) and from a watershed impacted only through runoff (WS2). In WS1, the ruminant-specific Bacteroidales 16S rRNA gene marker CF128F was detected in 65% of the water samples, while the non-16S rRNA gene markers Bac1, Bac2, and Bac5 were found in 32 to 37% of the water samples. In contrast, all source-specific markers were detected in less than 6% of the water samples from WS2. Binary logistic regressions (BLRs) revealed that the occurrence of Bac32F and CF128F was significantly correlated with season as a temporal factor and watershed as a site factor. BLRs also indicated that the dynamics of fecal-source-tracking markers correlated with the density of a traditional fecal indicator (P < 0.001). Overall, our results suggest that a combination of 16S rRNA gene and non-16S rRNA gene markers provides a higher level of confidence for tracking unknown sources of fecal pollution in environmental samples. This study also provided practical insights for implementation of microbial source-tracking practices to determine sources of fecal pollution and the influence of environmental variables on the occurrence of source-specific markers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583500PMC
http://dx.doi.org/10.1128/AEM.00601-08DOI Listing

Publication Analysis

Top Keywords

rrna gene
16
fecal pollution
12
water samples
12
feces watersheds
8
multiple host-specific
8
host-specific pcr
8
pcr assays
8
16s rrna
8
non-16s rrna
8
gene markers
8

Similar Publications

Although disturbances in the gut microbiome have been implicated in multiple sclerosis (MS), little is known about the changes and interactions between the gut microbiome and blood metabolome, and how these changes affect disease-modifying therapy (DMT) in preventing the progression of MS. In this study, the structure and composition of the gut microbiota were evaluated using 16S rRNA gene sequencing and an untargeted metabolomics approach was used to compare the serum metabolite profiles from patients with relapsing-remitting MS (RRMS) and healthy controls (HCs). Results indicated that RRMS was characterized by phase-dependent α-phylogenetic diversity and significant disturbances in serum glycerophospholipid metabolism.

View Article and Find Full Text PDF

Comparative analysis of the complete chloroplast genome of seven Wikstroemia taxa (Thymelaeaceae) provides insights into the genome structure and phylogenetic relationships.

Planta

January 2025

Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China.

New insights into the phylogeny of species in the family Thymelaeaceae and support of the recognition of D. genkwa and D. aurantiaca as species in the genus Wikstroemia are provided.

View Article and Find Full Text PDF

Lactobacillus gasseri prevents ibrutinib-associated atrial fibrillation through butyrate.

Europace

January 2025

Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.

Ibrutinib, a widely used anti-cancer drug, is known to significantly increase the susceptibility to atrial fibrillation (AF). While it is recognized that drugs can reshape the gut microbiota, influencing both therapeutic effectiveness and adverse events, the role of gut microbiota in ibrutinib-induced AF remains largely unexplored. Utilizing 16S rRNA gene sequencing, fecal microbiota transplantation, metabonomics, electrophysiological examination, and molecular biology methodologies, we sought to validate the hypothesis that gut microbiota dysbiosis promotes ibrutinib-associated AF and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Disruption of host-associated microbial communities can have detrimental impacts on host health. However, the capacity of individual host-associated microbial communities to resist disturbance has not been well defined. Using a novel fecal sampling method for honey bees (Apis mellifera), we examined the resistance of the honey bee gut microbiome to disruption from a low dose of the antibiotic, tetracycline (4.

View Article and Find Full Text PDF

Background: In the diagnosis of sexually transmitted infections, there has been a demand for multiple molecular assays to rapidly and simultaneously detect not only pathogens but also drug resistance-associated mutations.

Methods: In this study, we developed a new rapid simultaneous molecular assay for the detection of Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis, Mycoplasma genitalium, and M. genitalium macrolide (23S rRNA gene, A2058/A2059) and fluoroquinolone (ParC gene, S83I) drug resistance-associated mutations in approximately 35 minutes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!