Hyperlipidemia and the glomerular accumulation of atherogenic lipoproteins (low density lipoprotein, LDL; and its oxidatively-modified variants, ox-LDL) are commonly associated with the development of glomerular mesangial proliferative diseases. However, cellular signaling mechanisms by which atherogenic lipoproteins stimulate mesangial cell proliferation are poorly defined. In this study, we examined the effect of atherogenic lipoproteins on the activation of mesangial cell epidermal growth factor (EGF) receptor, mitogen activated protein kinase (MAP kinase), Ras, and mesangial cell proliferation. Stimulation of mesangial cells with LDL, and with greater activity, ox-LDL, markedly induced the transactivation of EGF receptor within 5 min of stimulation; the effect persisted up to at least 60 min LDL, and with a greater degree, ox-LDL, increased the activation of Ras, MAP kinase, and mesangial cell proliferation. Inhibition of EGF receptor kinase activity and/or MAP kinase activation blocked both LDL- and ox-LDL-induced mesangial cell proliferation. We suggest that the accumulation of LDL and more potently its oxidized forms within the glomerulus, through the transactivation of EGF receptor, stimulate down-stream Ras-MAP kinase signaling cascade leading to mesangial cell proliferation. Regulation of glomerular accumulation of atherogenic lipoproteins and/or EGF receptor signaling may provide protective environment against mesangial hypercellularity seen in glomerular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2008.08.010 | DOI Listing |
Int J Mol Sci
January 2025
Department of Pathology, Albert Szent-Györgyi Medical Center, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
Fibronectin glomerulopathy (FG) is caused by fibronectin 1 () gene mutations. A renal biopsy was performed on a 4-year-old girl with incidentally discovered proteinuria (150 mg/dL); her family history of renal disease was negative. Markedly enlarged glomeruli (mean glomerular diameter: 196 μm; age-matched controls: 140 μm), α-SMA-positive and Ki-67-positive mesangial cell proliferation (glomerular proliferation index 1.
View Article and Find Full Text PDFMar Drugs
January 2025
Division of Functional Food Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea.
(), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of intracellular MGO/MGO-derived advanced glycation end products (AGE), and regulation of downstream signaling pathways related to the AGE-receptor for AGEs (RAGE) interaction. IPA (0.
View Article and Find Full Text PDFHypertens Res
January 2025
Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
Mechanical forces such as glomerular hyperfiltration are crucial in the pathogenesis and progression of diabetic kidney disease. Piezo2 is a mechanosensitive cation channel and plays a major role in various biological and pathophysiological phenomena. We previously reported Piezo2 expression in mouse and rat kidneys and its alteration by dehydration and hypertension.
View Article and Find Full Text PDFClin Exp Nephrol
January 2025
Department of Pharmacy, Chaohu Hospital of Anhui Medical University, No. 64 North Chaohu Road, Chaohu, Anhui, 238000, People's Republic of China.
Purpose: This study seeks to investigate the fundamental molecular processes through which histone deacetylase 9 (HDAC9) governs the proliferation of glomerular mesangial cells in the context of immunoglobulin A nephropathy (IgAN) and to identify novel targets for clinical research on IgAN.
Methods: Data from high-throughput RNA sequencing for IgAN were procured from the Gene Expression Omnibus database to assess the expression profiles and clinical diagnostic significance of histone deacetylase family proteins (HDACs). Blood samples from 20 IgAN patients were employed in RT-qPCR analysis, and the spearman linear regression method was utilized to analyze the clinical correlation.
World J Diabetes
January 2025
Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China.
Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.
Aim: To explore the impact of MIZ on diabetic nephropathy (DN).
Methods: Diabetic mice were created using db/db mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!