Helicobacter pylori produces a heat shock protein A (HspA) that is unique to this bacteria. While the first 91 residues (domain A) of the protein are similar to GroES, the last 26 (domain B) are unique to HspA. Domain B contains eight histidines and four cysteines and was suggested to bind nickel. We have produced HspA and two mutants: Cys94Ala and Cys94Ala/Cys111Ala and identified the disulfide bridge pattern of the protein. We found that the cysteines are engaged in three disulfide bonds: Cys51/Cys53, Cys94/Cys111 and Cys95/Cys112 that result in a unique closed loop structure for the domain B.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2008.09.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!