In this paper we demonstrate that the anodic, bioelectrocatalytic performance of wastewater inoculum based, mixed culture microbial biofilms can be considerably improved by using a consecutive, purely electrochemical selection and biofilm acclimatization procedure. The procedure may represent an alternative to a repetitive mechanical biofilm removal, re-suspension and electrochemically facilitated biofilm formation. By using the proposed technique, the bioelectrocatalytic current density was increased from the primary to the secondary biofilm from 250 microAcm(-2) to about 500 microAcm(-2); and the power density of respective microbial fuel cells could be increased from 686 mWm(-2) to 1487 mWm(-2). The electrochemical characterization of the biofilms reveals a strong similarity to Geobacter sulfurreducens biofilms, which may indicate a dominating role of this bacterium in the biofilms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126046 | PMC |
http://dx.doi.org/10.1016/j.bios.2008.08.001 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany.
We propose a hybrid electrocatalytic-bioelectrocatalytic reaction cascade integrated on a gas diffusion electrode for CO reduction under selective formation of methanol. Ag-BiO selectively reduces gaseous CO to formate at neutral pH conditions. A subsequent enzymatic cascade comprising formaldehyde dehydrogenase and alcohol dehydrogenase, which are both nicotinamide adenine dinucleotide (NAD)-dependent, further reduce formate sequentially to formaldehyde and methanol.
View Article and Find Full Text PDFTrends Biotechnol
December 2024
School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea. Electronic address:
Advances in protein engineering-enabled enzyme immobilization technologies have significantly improved enzyme-electrode wiring in enzymatic electrochemical systems, which harness natural biological machinery to either generate electricity or synthesize biochemicals. In this review, we provide guidelines for designing enzyme-electrodes, focusing on how performance variables change depending on electron transfer (ET) mechanisms. Recent advancements in enzyme immobilization technologies are summarized, highlighting their contributions to extending enzyme-electrode sustainability (up to months), enhancing biosensor sensitivity, improving biofuel cell performance, and setting a new benchmark for turnover frequency in bioelectrocatalysis.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Molecular Chemistry, Univ. Grenoble Alpes-CNRS, 38041 Grenoble, France.
Continuous glucose monitors have revolutionized diabetes management, yet such devices are limited by their cost, invasiveness, and stability. Microneedle (MN) arrays could offer improved comfort compared to invasive implanted or mm-sized needle devices, but such arrays are hampered by complex fabrication processes, limited mechanical and sensor stability, and/or cytotoxicity concerns. This work demonstrates the first crosslinked hydrogel microneedle-bioelectroenzymatic sensor arrays capable of biomarker extraction and robust transdermal continuous monitoring in artificial interstitial fluid for 10 days.
View Article and Find Full Text PDFChemistry
November 2024
Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France.
Biofuel cells have become an interesting alternative for the design of sustainable energy conversion systems with multiple applications ranging from biosensing and bioelectronics to autonomously moving devices. However, as an electrochemical system, their performance is intimately related to mass transport conditions. In this work, the magnetohydrodynamic (MHD) effect is studied as an easy and straightforward alternative to enhance the performance of a biofuel cell based on the enzymes glucose oxidase (GOx) and bilirubin oxidase (BOD).
View Article and Find Full Text PDFAnal Chem
October 2024
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal.
The use of miniaturized probes opens a new dimension in the analysis of (bio)chemical processes, enabling the possibility to perform measurements with local resolution. In addition, multiparametric measurements are highly valuable for a holistic understanding of the investigated process. Therefore, different strategies have been suggested for simultaneous local measurements of various parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!