The challenge to achieve appropriate disinfection without forming harmful disinfection byproducts by conventional chemical disinfectants, as well as the growing demand for decentralized or point-of-use water treatment and recycling systems calls for new technologies for efficient disinfection and microbial control. Several natural and engineered nanomaterials have demonstrated strong antimicrobial properties through diverse mechanisms including photocatalytic production of reactive oxygen species that damage cell components and viruses (e.g. TiO2, ZnO and fullerol), compromising the bacterial cell envelope (e.g. peptides, chitosan, carboxyfullerene, carbon nanotubes, ZnO and silver nanoparticles (nAg)), interruption of energy transduction (e.g. nAg and aqueous fullerene nanoparticles (nC(60))), and inhibition of enzyme activity and DNA synthesis (e.g. chitosan). Although some nanomaterials have been used as antimicrobial agents in consumer products including home purification systems as antimicrobial agents, their potential for disinfection or microbial control in system level water treatment has not been carefully evaluated. This paper reviews the antimicrobial mechanisms of several nanoparticles, discusses their merits, limitations and applicability for water disinfection and biofouling control, and highlights research needs to utilize novel nanomaterials for water treatment applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2008.08.015DOI Listing

Publication Analysis

Top Keywords

disinfection microbial
12
microbial control
12
water treatment
12
nanomaterials water
8
water disinfection
8
antimicrobial agents
8
disinfection
6
antimicrobial
5
water
5
antimicrobial nanomaterials
4

Similar Publications

Periodontitis is complex microbial plaque induced condition. In this study, HiOra herbal mouthwash widely marketed in India, achieved a 5-log reduction in standard fungi and bacterial strains within 60 min. Thereby demonstrating antibacterial and antifungal activity similar to chlorhexidine and accordance with the PN EN 1040 and EN 1650 standards.

View Article and Find Full Text PDF

Objective: Nebulizer contamination has potential harmful effects on the respiratory system. The aim was to investigate the contamination profile of the nebulizers in cystic fibrosis patients and evaluate the relationship between hygiene practices and microbial contamination. Materials and Methods: Microbiological swab samples were taken from 3 different locations of the nebulizers of 102 patients.

View Article and Find Full Text PDF

Due to the global outbreaks caused by pathogens, disinfection has attracted widespread attention, especially as the final inactivation step in wastewater treatment plants (WWTPs). Ultraviolet (UV) radiation is regarded as one of low carbon disinfection methods without chemical agents, but in practice, the effects are sometimes unsatisfactory, e.g.

View Article and Find Full Text PDF

The widespread use of disinfectants and antiseptics has led to the emergence of nosocomial pathogens that are less sensitive to these agents, which in combination with multidrug resistance (MDR) can pose a significant epidemiologic risk. We investigated the susceptibility of nosocomial , , , and to a 0.05% chlorhexidine (CHX) solution and a biocidal S7 composite solution based on CHX (0.

View Article and Find Full Text PDF

Klebsiella pneumoniae is an opportunistic pathogen responsible for various infections in humans and animals. It is known for its resistance to multiple antibiotics, particularly through the production of Extended-Spectrum Beta-Lactamases (ESBLs), and its ability to form biofilms that further complicate treatment. This study aimed to isolate and identify K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!