In this paper is proposed a simultaneous pre-concentration procedure using cloud point extraction for the determination of copper and zinc in food samples employing sequential multi-element flame atomic absorption spectrometry (FS-FAAS). The reagent used is 1-(2-pyridylazo)-2-naphthol (PAN) and the micellar phase is obtained using the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) and centrifugation. The optimization step was performed using Box-Behnken design for three factors: solution pH, reagent concentration and buffer concentration. A multiple response function was established in order to get an experimental condition for simultaneous extraction of copper and zinc. Under the optimized experimental conditions, the method allows the determination of copper with a limit of detection (3sigma(b)/S, LOD) of 0.1 microg L(-1), precision expressed as relative standard deviation (R.S.D.) of 2.1 and 1.3% (N=10), for copper concentrations of 10 and 50 microg L(-1), respectively. Zinc is determined with a LOD of 0.15 microg L(-1) and precision as R.S.D. of 2.7 and 1.7% for concentrations of 10 and 50 microg L(-1), respectively. The enhancement factors obtained were 36 and 32 for copper and zinc, respectively. The accuracy was assessed by analysis of certified reference materials, namely, SRM 1567a - Wheat Flour and SRM 8433 - Corn Bran from National Institute of Standards & Technology and BCR 189-wholemeal flour from Institute of Reference Materials and Measurements. The method was applied to the determination of copper and zinc in oats, powdered chocolate, corn flour and wheat flour samples. The copper content in the samples analyzed varied from 1.14 to 3.28 microg g(-1) and zinc from 8.7 to 22.9 microg g(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2008.05.056DOI Listing

Publication Analysis

Top Keywords

copper zinc
20
determination copper
16
microg l-1
16
pre-concentration procedure
8
copper
8
zinc food
8
food samples
8
sequential multi-element
8
multi-element flame
8
flame atomic
8

Similar Publications

A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).

View Article and Find Full Text PDF

Imbalances in several trace elements related to antioxidant function may lead to autism spectrum disorder (ASD)-related physiological dysfunction. Nonetheless, contradictory results have been found on the connection between these elements and ASD, and studies of their joint effects and interactions have been insufficient. We therefore designed a case-control study of 152 ASD children and 152 age- and sex-matched typically developing (TD) children to explore the individual and combined associations of manganese (Mn), zinc (Zn), copper (Cu), and selenium (Se) with ASD.

View Article and Find Full Text PDF

Integrated Assessment of Heavy Metal Pollution in the Great Bačka Canal: Comparing Active and Passive Sampling Methods.

Chemosphere

December 2024

University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia.

This study investigates the environmental risks posed by heavy metals in sediment from the Great Bačka Canal using both active and passive sampling methods. The necessity of this research lies in the critical need to address sediment contamination in ecological hotspots and enhance sediment management practices. Active sampling revealed total heavy metal concentrations, while sequential extraction showed bioavailability varied across metal fractions.

View Article and Find Full Text PDF

Copper-cobalt diatomic bifunctional oxygen electrocatalysts based on three-dimensional porous nitrogen-doped carbon frameworks for high-performance zinc-air batteries.

J Colloid Interface Sci

December 2024

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, PR China; Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401, PR China. Electronic address:

Transition-metal-loaded carbon-based electrocatalysts are promising alternatives to conventional precious metal electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in high-performance zinc-air batteries. However, efficiently doping transition-metal single atoms onto carbon-based frameworks is a significant challenge. Herein, an improved template-sacrificing method combining a two-step carbonization process is proposed to fabricate Cu/Co diatomic sites coanchored on a three-dimensional nitrogen-doped carbon-based framework.

View Article and Find Full Text PDF

This study assessed the safety of trace metal concentrations in locally produced nutritive food-drinks consumed in Yenagoa metropolis, Bayelsa State, Nigeria. Three different drink types (viz, tiger nut juice, a mixture of tiger nut and soya bean juice and soya bean juice) were purchased from various locations in Yenagoa metropolis, Bayelsa State, Nigeria, between January and February 2024. Thirty samples were analyzed for trace metals using atomic absorption spectrophotometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!