Delta-opioid receptors activate ERK/MAP kinase via integrin-stimulated receptor tyrosine kinases.

Cell Signal

Institute of Pharmacology, Toxicology and Pharmacy, University of Munich, Königinstrasse 16, D-80539 München, Germany.

Published: December 2008

Integrin-mediated cell adherence to extracellular matrix proteins results in stimulation of ERK1/2 activity, a mechanism involving focal adhesion tyrosine kinases (pp125FAK, Pyk-2) and epidermal growth factor receptors (EGFRs). G protein-coupled receptors (GPCRs) may also mediate ERK1/2 activation in an integrin-dependent manner, the underlying signaling mechanism of which still remains unclear. Here we demonstrate that the delta-opioid receptor (DOR), a typical GPCR, stimulates ERK1/2 activity in HEK293 cells via integrin-mediated transactivation of EGFR function. Inhibition of integrin signaling by RGDT peptides, cytochalasin, and by keeping the cells in suspension culture both blocked [D-Ala(2), D-Leu(5)]enkephalin (DADLE)- and etorphine-stimulated ERK1/2 activity. Integrin-dependent ERK1/2 activation does not involve FAK/Pyk-2, because over-expression of the FAK/Pyk-2 inhibitor SOCS-3 failed to attenuate DOR signaling. Exposure of the cells to the EGFR inhibitors AG1478 and BPIQ-I blocked DOR-mediated ERK1/2 activation. Because RGDT peptides also prevented DOR-mediated EGFR activation, the present findings indicate that in HEK293 cells DOR-stimulated ERK1/2 activity is mediated by integrin-stimulated EGFRs. Further studies with the phospholipase C (PLC) inhibitors U73122 and ET-18-OCH(3) revealed that opioid-stimulated integrin activation is sensitive to PLC. In contrast, integrin-mediated transactivation of EGFR function appears to be dependent on PKC-delta, as indicated by studies with rottlerin and siRNA knock-down. A similar ERK1/2 signaling pathway was observed for NG108-15 cells, a neuronal cell line endogenously expressing the DOR. In these cells, the nerve growth factor TrkA receptor replaces the EGFR in connecting DOR-activated integrins to the Ras/Raf/ERK1/2 pathway. Together, these data describe an alternative ERK1/2 signaling pathway in which the DOR transactivates the growth factor receptor associated mitogen-activated protein kinase cascade in an integrin-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2008.09.002DOI Listing

Publication Analysis

Top Keywords

erk1/2 activity
16
growth factor
12
erk1/2 activation
12
erk1/2
9
tyrosine kinases
8
integrin-dependent manner
8
hek293 cells
8
integrin-mediated transactivation
8
transactivation egfr
8
egfr function
8

Similar Publications

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.

View Article and Find Full Text PDF

Exercise is one of the most important activities for every individual due to its proven health beneficials. Several investigations have highlighted the advantageous impacts of aerobic exercise, largely attributed to its capacity to enhance the body's capability to defend against threats against oxidative stress. The information currently accessible suggests that adding regular aerobic exercise to a daily routine greatly decreases the chances of developing serious cancer and passing away.

View Article and Find Full Text PDF

FOXC1-mediated serine metabolism reprogramming enhances colorectal cancer growth and 5-FU resistance under serine restriction.

Cell Commun Signal

January 2025

Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.

Colorectal cancer (CRC) is the most common gastrointestinal malignancy, and 5-Fluorouracil (5-FU) is the principal chemotherapeutic drug used for its treatment. However, 5-FU resistance remains a significant challenge. Under stress conditions, tumor metabolic reprogramming influences 5-FU resistance.

View Article and Find Full Text PDF

Background/objectives: Melanoma malignum is considered the most dangerous form of skin cancer, characterized by the exceptional resistance to many conventional chemotherapies. The aim of this study was to evaluate the effect of Nutramil Complex (NC)-Food for Special Medical Purpose (FSMP), on two types of melanoma cell lines, primary WM115 and malignant WM266-4.

Methods: At 24 h after seeding, growth medium was replaced with a medium containing encoded treatments of NC or NC-CC (Nutramil Complex without calcium caseinate) at various concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!