Until the second half of the 20th century, it was broadly accepted that most birds are microsmatic if not anosmic and unable to detect and use olfactory information. Exceptions were eventually conceded for species like procellariiforms, vultures or kiwis that detect their food at least in part based on olfactory signals. During the past 20-30 years, many publications have appeared indicating that this view is definitely erroneous. We briefly review here anatomical, electrophysiological and behavioral data demonstrating that birds in general possess a functional olfactory system and are able to use olfactory information in a variety of ethological contexts, including reproduction. Recent work also indicates that brain activation induced by sexual interactions with a female is significantly affected by olfactory deprivation in Japanese quail. Brain activation was measured via immunocytochemical detection of the protein product of the immediate early gene c-fos. Changes observed concerned two brain areas that play a key role in the control of male sexual behavior, the medial preoptic nucleus and the bed nucleus of the stria terminalis therefore suggesting a potential role of olfaction in the control of reproduction. The widespread idea that birds are anosmic or microsmatic is thus not supported by the available experimental data and presumably originates in our anthropomorphic view that leads us to think that birds do not smell because they have a rigid beak and nostrils and do not obviously sniff. Experimental analysis of this phenomenon is thus warranted and should lead to a significant change in our understanding of avian biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692081 | PMC |
http://dx.doi.org/10.1016/j.bbr.2008.08.036 | DOI Listing |
Biol Aujourdhui
January 2025
Sorbonne Université, Institut d'Écologie et des Sciences de l'Environnement de Paris, 4 place Jussieu, 75005 Paris, France - Institut Universitaire de France, Paris, France.
Insects and flowering plants are the most abundant and diverse multicellular organisms on Earth, accounting for 75% of known species. Their evolution has been largely interdependent since the so-called Angiosperm Terrestrial Revolution (100-50 Mya), when the explosion of plant diversity stimulated the evolution of pollinating and herbivorous insects. Plant-insect interactions rely heavily on chemical communication via volatile organic compounds (VOCs).
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.
The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Pulmonary, Vitkovice Hospital, Ostrava, Czech Republic.
Introduction: The use of signal dogs for cancer detection is not yet routinely performed,but dogs and their powerful olfactory system have proven to be a unique and valuable tool for many lineages and are beginning to be incorporated into medical practice. This method has great advantages; the dog can detect a tumour in the human body already in preclinical stages, when the patient has no symptoms yet. The identification of cancer biomarkers to enable early diagnosis is a need for many types of cancer, whose prognosis is strongly dependent on the stage of the disease.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy.
COVID-19-related persistent olfactory dysfunction (OD) presents remarkable interindividual differences, and little is known about the host genetic factors that are involved in its etiopathogenesis. The goal of this study was to explore the genetic factors underpinning COVID-19-related OD through the analysis of Whole Genome Sequencing data of 153 affected subjects, focusing on genes involved in antiviral response regulation. An innovative approach was developed, namely the assessment of the association between a "gene score", defined as the ratio of the number of homozygous alternative variants within the gene to its length, and participants' olfactory function.
View Article and Find Full Text PDFBiomolecules
January 2025
Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.
Olfaction mediated by the antennae is a vital sensory modality for arthropods and could be applied as a tool in pest control. The ectoparasitic mite poses a significant threat to the health of the honey bee worldwide and has garnered global attention. To better understand the chemical ecology of this host-parasite relationship, we collected and characterized the volatile organic compounds (VOCs) from and used electroantennography (EAG) to record the responses of honey bee ( and ) antennae to the different VOCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!