A new method is presented for the redesign of protein-protein interfaces, resulting in specificity of the designed pair while maintaining high affinity. The design is based on modular interface architecture and was carried out on the interaction between TEM1 beta-lactamase and its inhibitor protein, beta-lactamase inhibitor protein. The interface between these two proteins is composed of several mostly independent modules. We previously showed that it is possible to delete a complete module without affecting the overall structure of the interface. Here, we replace a complete module with structure fragments taken from nonrelated proteins. Nature-optimized fragments were chosen from 10(7) starting templates found in the Protein Data Bank. A procedure was then developed to identify sets of interacting template residues with a backbone arrangement mimicking the original module. This generated a final list of 361 putative replacement modules that were ranked using a novel scoring function based on grouped atom-atom contact surface areas. The top-ranked designed complex exhibited an affinity of at least the wild-type level and a mode of binding that was remarkably specific despite the absence of negative design in the procedure. In retrospect, the combined application of three factors led to the success of the design approach: utilizing the modular construction of the interface, capitalizing on native rather than artificial templates, and ranking with an accurate atom-atom contact surface scoring function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2008.08.078DOI Listing

Publication Analysis

Top Keywords

redesign protein-protein
8
high affinity
8
beta-lactamase inhibitor
8
inhibitor protein
8
complete module
8
module structure
8
scoring function
8
atom-atom contact
8
contact surface
8
interface
5

Similar Publications

Pseudosymmetric hetero-oligomers with three or more unique subunits with overall structural (but not sequence) symmetry play key roles in biology, and systematic approaches for generating such proteins de novo would provide new routes to controlling cell signaling and designing complex protein materials. However, the de novo design of protein hetero-oligomers with three or more distinct chains with nearly identical structures is a challenging unsolved problem because it requires the accurate design of multiple protein-protein interfaces simultaneously. Here, we describe a divide-and-conquer approach that breaks the multiple-interface design challenge into a set of more tractable symmetric single-interface redesign tasks, followed by structural recombination of the validated homo-oligomers into pseudosymmetric hetero-oligomers.

View Article and Find Full Text PDF

Redesigning error control in cross-linking mass spectrometry enables more robust and sensitive protein-protein interaction studies.

Mol Syst Biol

January 2025

Research group "Structural Interactomics", Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.

Cross-linking mass spectrometry (XL-MS) allows characterizing protein-protein interactions (PPIs) in native biological systems by capturing cross-links between different proteins (inter-links). However, inter-link identification remains challenging, requiring dedicated data filtering schemes and thorough error control. Here, we benchmark existing data filtering schemes combined with error rate estimation strategies utilizing concatenated target-decoy protein sequence databases.

View Article and Find Full Text PDF
Article Synopsis
  • Protein-protein interactions (PPIs) are essential for biological functions and play a key role in diseases like cancer and neurological disorders by altering PPI networks.
  • Understanding the kinome, a group of 518 human kinases, is crucial as they are often dysregulated in diseases and can be targeted with drugs that inhibit their activity.
  • The newly developed 2nd generation kinobead competition and correlation analysis (2 gen kiCCA) method allows for better identification and mapping of kinase PPIs, leading to insights into signaling pathways and therapeutic targets in diseases like neuroblastoma.
View Article and Find Full Text PDF

Rational design approach to improve the solubility of the β-sandwich domain 1 of a thermophilic protein.

J Biosci Bioeng

October 2024

Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridaicho, Kitaku, Okayama 700-0005, Japan. Electronic address:

The β-sandwich domain 1 (SD1) of islandisin is a stable thermophilic protein with surface loops that can be redesigned for specific target binding, architecturally comparable to the variable domain of immunoglobulin (IgG). SD1's propensity to aggregate due to incorrect folding and subsequent accumulation in Escherichia coli inclusion bodies limits its use in biotechnological applications. We rationally designed SD1 for improved variants that were expressed in soluble forms in E.

View Article and Find Full Text PDF

Hydrophobic core evolution of major histocompatibility complex class I chain-related protein A for dramatic enhancing binding affinity.

Int J Biol Macromol

June 2024

State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; TIOC Therapeutics Limited, Hangzhou 310018, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China. Electronic address:

Interface residues at sites of protein-protein interaction (PPI) are the focus for affinity optimisation. However, protein hydrophobic cores (HCs) play critical roles and shape the protein surface. We hypothesise that manipulating protein HCs can enhance PPI interaction affinities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!