AI Article Synopsis

  • The liquid-frozen deposition manufacturing (LFDM) system improves upon the fused deposition manufacturing (FDM) system to create tissue-engineered scaffolds with better pore structure and mechanical strength.
  • LFDM scaffolds made from varying concentrations of PLGA solutions show that higher concentrations lead to stronger scaffolds but smaller pore sizes and lower water content.
  • Neocartilage formation was successful in LFDM scaffolds seeded with porcine chondrocytes, which maintained better cell shape and extracellular matrix production compared to FDM scaffolds that struggled with cell growth and matrix production.

Article Abstract

The fused deposition manufacturing (FDM) system has been used to fabricate tissue-engineered scaffolds with highly interconnecting and controllable pore structure, although the system is limited to a few materials. For this reason, the liquid-frozen deposition manufacturing (LFDM) system based on an improvement of the FDM process was developed. Poly(D,L-lactide-co-glycolide) (PLGA) precision scaffolds were fabricated using LFDM from PLGA solutions of different concentrations. A greater concentration of PLGA solution resulted in greater mechanical strength but also resulted in less water content and smaller pore size on the surface of the scaffolds. LFDM scaffolds in general had mechanical strength closer to that of native articular cartilage than did FDM scaffolds. Neocartilage formation was observed in LFDM scaffolds seeded with porcine articular chondrocytes after 28 days of culture. Chondrocytes in LFDM scaffolds made from low concentrations (15-20%) of PLGA solution maintained a round shape, proliferated well, and secreted abundant extracellular matrix. In contrast, the FDM PLGA scaffolds had low cell numbers and poor matrix production because of heavy swelling. The LFDM system offered a useful way to fabricate scaffolds for cartilage tissue-engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.tea.2008.0090DOI Listing

Publication Analysis

Top Keywords

deposition manufacturing
12
lfdm scaffolds
12
scaffolds
10
precision scaffolds
8
liquid-frozen deposition
8
lfdm system
8
plga solution
8
mechanical strength
8
scaffolds low
8
lfdm
6

Similar Publications

Background: High tibial osteotomy (HTO) is a surgical procedure for treating certain knee conditions. Proper execution of HTO can preserve joint function and delay or avoid the need for total knee replacement. This study compared different 3D printing techniques (fused deposition modeling, selective laser sintering, and direct metal laser sintering) and a navigation system for their suitability in assisting HTO surgeries.

View Article and Find Full Text PDF

Adhesive and antibacterial guar gum-based nanocomposite hydrogel for remodeling wound healing microenvironment.

Int J Biol Macromol

December 2024

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China. Electronic address:

Hydrogels are promising wound dressings due to their extracellular matrix-like properties and tunable structure-function characteristics. Besides the physical isolation effect, hydrogel dressings are highly expected to possess tissue-adhesive performance and antibacterial capacity, which are beneficial for their clinical translations. Herein, a guar gum (GG)-based nanocomposite hydrogel was fabricated by mixing methacrylated GG (GGMA), acrylic acid, acrylated 3-aminophenylboronic acid, mangiferin (MF)-loaded cetyltrimethyl ammonium chloride (CTAC) micelles (MF@CTAC) and radical initiator.

View Article and Find Full Text PDF

Hydrophobic modification of cellulose nanofibers/bionic flower-like ZnO synergistically stabilized Pickering emulsion to enhance pesticide deposition.

Int J Biol Macromol

December 2024

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Environmental issues arising from the low pesticide utilization rate make the development of environmentally friendly and low-cost pesticide carrier systems an urgent problem to be solved. Pickering emulsion systems have shown broad application prospects in pesticide delivery. In this study, dodecenyl succinic anhydride (DDSA) was used to hydrophobically modify cellulose nanofiber (D-CNF), and biomimetic flower-like zinc oxide (ZnO) particles were prepared by precipitation method at room temperature.

View Article and Find Full Text PDF

Due to the limited self-regeneration capacity of bone, medical interventions is often required for large segmental bone defects. In this study, the application of porous titanium alloy (Ti6Al4V) scaffold in bone defect repair was investigated. Owing to its excellent mechanical properties and biocompatibility, Ti6Al4V is a preferred choice for orthopedic implants.

View Article and Find Full Text PDF

Skin wounds are extremely frequent injuries related to many etiologies. They are a burden on healthcare systems worldwide. Skin dressings are the most popular therapy, and collagen is the most commonly used biomaterial, although new sources of collagen have been studied, especially spongin-like from marine sponges (SPG), as a promising source due to a similar composition to vertebrates and the ability to function as a cell-matrix adhesion framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: