Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study examined the expression of heparan sulphate proteoglycan, syndecan-2 (Sdc-2) in the corpus callosum and the amoeboid microglial cells (AMC) in the neonatal rat brain in response to hypoxia. In 1-day old Wistar rats subjected to hypoxia the mRNA and protein expression of Sdc-2 in the corpus callosum, heavily populated by AMC, was increased up to 3 days after the hypoxic exposure. Immunoexpression of Sdc-2 was localized in AMC as confirmed by double labeling using microglial marker. Primary cultures of microglial cells subjected to hypoxia showed a significant increase in Sdc-2 expression. Application of Sdc-2 to microglial cultures under hypoxia increased the release of tumor necrosis factor-alpha, interleukin-1beta, chemokine (C-C motif) ligand 2 (CCL2), and chemokine (C-X-C motif) ligand 12 (CXCL12) by the microglial cells. Additionally, Sdc-2 enhanced the production of reactive oxygen species (ROS) by microglia subjected to hypoxia. Edaravone [3-methyl-1phenyl-2-pyrazolin-5-one], an antioxidant drug, suppressed the hypoxia- and Sdc-2-induced increased production of cytokines, chemokines, and ROS. In the light of these findings, we suggest that Sdc-2 plays an important role in microglial production of inflammatory cytokines, chemokines, and ROS in hypoxic conditions. In this connection, edaravone suppressed the hypoxia- and Sdc-2-induced increased cytokine and ROS production suggesting its therapeutic potential in ameliorating neuroinflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/glia.20764 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!