Quantitative analysis of the dendritic arborizations of wild-type (WT) and superoxide dismutase 1 (SOD1) postnatal mouse motoneurons was performed following intracellular staining and 3D reconstructions with Neurolucida system. The population of lumbar motoneurons was targeted in the caudal part of the L5 segment, and all labeled motoneurons were located within the same ventrolateral pool. Despite the similar size of the soma and the mean diameter of primary dendrites, the dendritic arborizations of the WT and SOD1 motoneurons showed significant differences in terms of their morphometric parameters. The metric and topological parameters of dendrites show that the total dendritic length and surface area and total number of segments, branching nodes, and tips per motoneuron were significantly higher in SOD1 motoneurons. Our main finding concerns a proliferation of dendritic branches starting at about 100 microm from the soma in the SOD1 motoneurons. However, the longest and mean dendritic paths from soma to terminations were similar, giving a comparable envelope of the dendritic fields. Indeed, the SOD1 motoneurons were larger as a result of abnormal branching. The results suggest that a defect in pruning mechanisms occurs during this developmental period. The abnormal growth of the dendritic arborizations and the reduced excitability of postnatal SOD1 motoneurons could be a neuroprotective response and would represent an early compensatory mechanism against the activity-induced toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.21818 | DOI Listing |
Sci Rep
December 2024
Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal degenerative disease of motor neurons, presenting with relentlessly progressive muscle atrophy and weakness. More than fifty genes carrying causative or disease-modifying variants have been identified since the 1990s, when the first ALS-associated variant in the gene SOD1 was discovered. The most commonly mutated ALS genes in the European populations include the C9orf72, SOD1, TARDBP and FUS.
View Article and Find Full Text PDFInt J Surg
October 2024
Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.
Neurodegeneration refers to the gradual loss of neurons and extensive changes in glial cells like tau inclusions in astrocytes and oligodendrocytes, α-synuclein inclusions in oligodendrocytes and SOD1 aggregates in astrocytes along with deterioration in the motor, cognition, learning, and behavior. Common neurodegenerative disorders are Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), spinocerebellar ataxia (SCA), and supranuclear palsy. There is a lack of effective treatment for neurodegenerative diseases, and scientists are putting their efforts into developing therapies against them.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Neurocentre Magendie INSERM U1215, Université de Bordeaux, 33000 Bordeaux, France.
In amyotrophic lateral sclerosis (ALS), early mitochondrial dysfunction may contribute to progressive motor neuron loss. Remarkably, the ectopic expression of the Orthobornavirus bornaense type 1 (BoDV-1) X protein in mitochondria blocks apoptosis and protects neurons from degeneration. Therefore, this study examines the neuroprotective effects of X protein in an ALS mouse model.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Medical Laboratory Technology, Faculty of Medical Applied Science, Northern Border University, Arar, Saudi Arabia.
Superoxide dismutase 1 (SOD1) is a vital enzyme responsible for attenuating oxidative stress through its ability to facilitate the dismutation of the superoxide radical into oxygen and hydrogen peroxide. The progressive loss of motor neurons characterize amyotrophic lateral sclerosis (ALS), a crippling neurodegenerative disease that is caused by mutations in the SOD1 gene. In this study, mutational analysis was performed to study the various mutations, the pathogenicity and stability ΔΔG (binding free energy) of the variant of SOD1.
View Article and Find Full Text PDFJ Control Release
December 2024
School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!