Enhancement of the electrocatalytic activity of gold nanoparticles via NaBH4 treatment.

Chem Commun (Camb)

Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735, Korea.

Published: October 2008

We report on the enhancement of the electrocatalytic activity of Au nanoparticles after NaBH4 treatment and its application to H2O2 detection.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b806984kDOI Listing

Publication Analysis

Top Keywords

enhancement electrocatalytic
8
electrocatalytic activity
8
nanoparticles nabh4
8
nabh4 treatment
8
activity gold
4
gold nanoparticles
4
treatment report
4
report enhancement
4
activity nanoparticles
4
treatment application
4

Similar Publications

Covalent organic frameworks (COFs) are often employed in oxygen reduction reactions (ORR) for hydrogen peroxide production due to their tunable structures and compositions. However, COF electrocatalysts require precise structural engineering, such as heteroatoms or metal site doping, to modulate the reaction pathway during the ORR process. In this work, we designed a tetraphenyl-p-phenylenediamine based COF electrocatalyst, namely TPDA-BDA, which exhibited excellent two-electron (2e) ORR performance with high H2O2 selectivity of 89.

View Article and Find Full Text PDF

Electrocatalytic reduction of CO (eCORR) into valuable multi-carbon (C) products is an effective strategy for combating climate change and mitigating energy crises. The high-energy density and diverse applications of C products have attracted considerable interest. However, the complexity of the reaction pathways and the high energy barriers to C-C coupling lead to lower selectivity and faradaic efficiency for C products than for C products.

View Article and Find Full Text PDF

Ligand-induced changes in the electrocatalytic activity of atomically precise Au nanoclusters.

Chem Sci

January 2025

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China

Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CORR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au(SR)] nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity hydrophobicity in modulating the interface dynamics and electrocatalytic performance.

View Article and Find Full Text PDF

Heteroatom number-dependent cluster frameworks in structurally comparable Pd-Au nanoclusters.

Nanoscale

January 2025

Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.

Investigating the impact of heteroatom alloying extents on regulating the cluster structures is crucial for the fabrication of cluster-based nanomaterials with customized properties. Herein, two structurally comparable PdAu ( = 1, 2) nanoclusters with a uniform surface environment but completely distinct kernel configurations were controllably synthesized and structurally determined. The single Pd-alloyed Pd1Au12 nanocluster retained an icosahedral metal framework, while the Pd2Au12 nanocluster with two Pd heteroatoms exhibited a unique toroidal configuration.

View Article and Find Full Text PDF

Widely used catalysts for electrocatalytic hydrogen (H) evolution reaction (HER) have high platinum (Pt) contents and show low efficiencies in neutral and alkaline solutions. Herein, a carbon nanotube (CNT) supported Pt catalyst (Pt/CNT45) with 1 wt.% Pt is fabricated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!