MicroRNAs (miRNAs), approximately 22-nt RNAs that mediate post-transcriptional regulation of mRNAs in animals and plants, are a diverse class of regulatory genes whose specific biological functions are largely unknown. Here we detail a protocol to design and introduce into cultured Drosophila and human cells sequence-specific antisense oligonucleotides (ASOs) that block the function of individual miRNAs. Coupled with recent studies that catalog the miRNAs expressed in diverse cultured cells, our method offers a rapid (<1 week) approach to validate miRNA targets and to study the cellular functions of individual human and Drosophila miRNAs. ASO-based inactivation of miRNAs is faster and simpler than comparable genetic or 'sponge'-based approaches, for which extensive recombinant DNA manipulation is required. We present our ASO design principles and an optimized transfection protocol in which transfection efficiency of Drosophila Schneider 2 cells can approach 100%. Our 3'-cholesterol-modified ASOs have enhanced potency, allowing miRNA inhibition for at least 7 d from a single transfection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559958 | PMC |
http://dx.doi.org/10.1038/nprot.2008.145 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!