Sarcolemmal ATP-sensitive potassium channels (K(ATP)) act as metabolic sensors that facilitate adaptation of the left ventricle to changes in energy requirements. This study examined the mechanism by which K(ATP) dysfunction impairs the left ventricular response to stress using transgenic mouse strains with cardiac-specific disruption of K(ATP) activity (SUR1-tg mice) or Kir6.2 gene deficiency (Kir6.2 KO). Both SUR1-tg and Kir6.2 KO mice had normal left ventricular mass and function under unstressed conditions. Following chronic transverse aortic constriction, both SUR1-tg and Kir6.2 KO mice developed more severe left ventricular hypertrophy and dysfunction as compared with their corresponding WT controls. Both SUR1-tg and Kir6.2 KO mice had significantly decreased expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha and a group of energy metabolism related genes at both protein and mRNA levels. Furthermore, disruption of K(ATP) repressed expression and promoter activity of PGC-1alpha in cultured rat neonatal cardiac myocytes in response to hypoxia, indicating that K(ATP) activity is required to maintain PGC-1alpha expression under stress conditions. PGC-1alpha gene deficiency also exacerbated chronic transverse aortic constriction-induced ventricular hypertrophy and dysfunction, suggesting that depletion of PGC-1alpha can worsen systolic overload induced ventricular dysfunction. Both SUR1-tg and Kir6.2 KO mice had decreased FOXO1 after transverse aortic constriction, in agreement with the reports that a decrease of FOXO1 can repress PGC-1alpha expression. Furthermore, inhibition of K(ATP) caused a decrease of FOXO1 associated with PGC-1alpha promoter. These data indicate that K(ATP) channels facilitate the cardiac response to stress by regulating PGC-1alpha and its target genes, at least partially through the FOXO1 pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877276PMC
http://dx.doi.org/10.1161/CIRCRESAHA.107.170795DOI Listing

Publication Analysis

Top Keywords

sur1-tg kir62
16
kir62 mice
16
left ventricular
12
transverse aortic
12
sarcolemmal atp-sensitive
8
atp-sensitive potassium
8
cardiac response
8
systolic overload
8
response stress
8
disruption katp
8

Similar Publications

Sarcolemmal ATP-sensitive potassium channels (K(ATP)) act as metabolic sensors that facilitate adaptation of the left ventricle to changes in energy requirements. This study examined the mechanism by which K(ATP) dysfunction impairs the left ventricular response to stress using transgenic mouse strains with cardiac-specific disruption of K(ATP) activity (SUR1-tg mice) or Kir6.2 gene deficiency (Kir6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!