"Ryegrass staggers" is a neurological condition of unknown mechanism that impairs motor function in livestock. It is caused by infection of perennial ryegrass pastures by an endophytic fungus that produces neurotoxins, predominantly the indole-diterpenoid compound lolitrem B. Animals grazing on such pastures develop uncontrollable tremors and become uncoordinated in their movement. Lolitrem B and the structurally related tremor inducer paxilline both act as potent large conductance calcium-activated potassium (BK) channel inhibitors. Using patch clamping, we show that their different apparent affinities correlate with their toxicity in vivo. To investigate whether the motor function deficits produced by lolitrem B and paxilline are due to inhibition of BK ion channels, their ability to induce tremor and ataxia in mice deficient in this ion channel (Kcnma1(-/-)) was examined. Our results show that mice lacking Kcnma1 are unaffected by these neurotoxins. Furthermore, doses of these substances known to be lethal to wild-type mice had no effect on Kcnma1(-/-) mice. These studies reveal the BK channel as the molecular target for the major components of the motor impairments induced by ryegrass neurotoxins. Unexpectedly, when the response to lolitrem B was examined in mice lacking the beta4 BK channel accessory subunit (Kcnmb4(-/-)), only low-level ataxia was observed. Our study therefore reveals a new role for the accessory BK beta4 subunit in motor control. The beta4 subunit could be considered as a potential target for treatment of ataxic conditions in animals and in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.108.143933DOI Listing

Publication Analysis

Top Keywords

"ryegrass staggers"
8
staggers" neurological
8
motor function
8
examined mice
8
mice lacking
8
beta4 subunit
8
mice
5
molecular mechanism
4
mechanism "ryegrass
4
neurological disorder
4

Similar Publications

Aims: To assess animal health and production in sheep grazing perennial ryegrass () infected with a tall fescue endophyte ( sp.).

Methods: Three replicates of pure perennial ryegrass pastures infected with AR501 tall fescue endophyte (AR501 HE), AR1, AR37 or standard endophyte (STD) (all >85% infection) and a low endophyte control (AR501 LE) were grazed by 10 lambs for 7 weeks during late summer/early autumn, 2017.

View Article and Find Full Text PDF

Epoxyjanthitrems I-IV (-) and epoxyjanthitriol () were isolated from seed of perennial ryegrass () infected with the endophytic fungus var. Although structures for epoxyjanthitrems I-IV have previously been proposed in the literature, this is the first report of a full structural elucidation yielding NMR (Nuclear magnetic resonance) assignments for all five epoxyjanthitrem compounds, and additionally, it is the first isolation of epoxyjanthitriol (). Epoxyjanthitrem I induced tremors in mice and gave a dose dependent reduction in weight gain and feeding for porina (), a common pasture pest in New Zealand.

View Article and Find Full Text PDF

The indole diterpenoid toxin lolitrem B is a tremorgenic agent found in the common grass species, perennial ryegrass (Lolium perenne). The toxin is produced by a symbiotic fungus Epichloë festucae (var. lolii) and ingestion of infested grass with sufficient toxin levels causes a movement disorder in grazing herbivores known as 'ryegrass staggers'.

View Article and Find Full Text PDF

The steady growth of inflammatory diseases of the udder in dairy cattle forces us to look for the causes of this phenomenon in the context of growing chemical pollution of the environment and feeds. Within the framework of this concept, an analysis was made of the polarity level of the three toxic impurity groups, which are commonly present in dairy cattle feeds. These impurities are presented by mycotoxins, polyaromatic hydrocarbons (PAH) and persistent organic pollutants (POP).

View Article and Find Full Text PDF

The most potent of the indole diterpenes, lolitrem B, is found in perennial ryegrass ( L.) infected with the endophyte var. (also termed TG-1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!