Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ability to ectopically control gene expression is a fundamental tool for the study of bacterial physiology and pathogenesis. While many efficient inducible expression systems are available for Gram-negative bacteria, few are useful in phylogenetically distant organisms, such as mycobacteria. We have adapted a highly-inducible regulon of Rhodococcus rhodochrous to artificially regulate gene expression in both rapidly-growing environmental mycobacteria and slow-growing pathogens, such as Mycobacterium tuberculosis. We demonstrate that this artificial regulatory circuit behaves as a bistable switch, which can be manipulated regardless of growth phase in vitro, and during intracellular growth in macrophages. High-level overexpression is also possible, facilitating biochemical and structural studies of mycobacterial proteins produced in their native host.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845969 | PMC |
http://dx.doi.org/10.1016/j.tube.2008.07.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!