Background & Aims: In addition to genetic alterations, epigenetic changes underlie tumor progression and metastasis. Promoter methylation can silence tumor suppressor genes, and reactive oxygen species (ROS) promote DNA damage, although the relationship between ROS and epigenetic changes in cancer cells is not clear. We sought to determine whether ROS promote hypermethylation of the promoter region of E-cadherin, a regulator of the epithelial-to-mesenchymal transition, in hepatocellular carcinoma (HCC) cells.
Methods: HCC cells were exposed to H(2)O(2) or stably transfected to express Snail, a transcription factor that down-regulates E-cadherin expression. E-cadherin and Snail expression levels were examined by real-time reverse-transcriptase polymerase chain reaction and immunoblot analyses. The methylation status of E-cadherin was examined by methyl-specific polymerase chain reaction, bisulfite sequencing, and chromatin immunoprecipitation. The interactions between Snail, histone deacetylase 1, and DNA methyltransferase 1 were assessed by immunoprecipitation/immunoblot and immunofluorescence analyses. ROS-induced stress, E-cadherin expression, Snail expression, and E-cadherin promoter methylation were confirmed in HCC tissues by immunoblot, immunohistochemistry, and methyl-specific polymerase chain reaction analyses.
Results: We demonstrated that ROS induce hypermethylation of the E-cadherin promoter by increasing Snail expression. Snail induced DNA methylation of the E-cadherin promoter by recruiting histone deacetylase 1 and DNA methyltransferase 1. In human HCC tissues, we observed a correlation among ROS induction, E-cadherin down-regulation, Snail up-regulation, and E-cadherin promoter methylation.
Conclusions: These findings provide novel mechanistic insights into epigenetic modulations induced by ROS in the process of carcinogenesis. They are potentially relevant to understanding the activity of ROS in silencing various tumor suppressor genes and in subsequent tumor progression and metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.gastro.2008.07.027 | DOI Listing |
Clin Appl Thromb Hemost
December 2024
Department of Hematology and Transfusion sciences, School of Allied Medical Sciences, Tehran University of Medical sciences, Tehran, Iran.
Objective: DNA methylation, as an epigenetic alteration, plays an essential role in the development of atherosclerosis and venous thrombosis. E-cadherin, a tumor suppressor gene and adhesion molecule, has a crucial function in platelet aggregation and hemostasis. P16, a cell cycle regulator, is involved in venous thrombosis.
View Article and Find Full Text PDFClin Epigenetics
November 2024
Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
Background: The progression of liver cancer is a complicated process that involves genetic and epigenetic changes. Paired box 6 (PAX6) is a critical transcription factor for embryonic development. PAX6 is abnormally methylated in human cancer.
View Article and Find Full Text PDFJ Cell Physiol
November 2024
School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China.
Breast cancer is a heterogeneous malignant tumor, and its high metastasis rate depends on the abnormal activation of cell dynamics. Formin-like protein 3 (FMNL3) plays an important role in the formation of various cytoskeletons that participate in cell movement. The objective of this study was to explore the function of FMNL3 in breast cancer progression and endeavor to reveal the molecular mechanism of this phenomenon.
View Article and Find Full Text PDFNeoplasma
October 2024
Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital, Haikou People's Hospital, Haikou, Hainan, China.
This study focuses on exploring the role of Six2 in the progression of hepatocellular carcinoma (HCC) and its resistance to the chemotherapy drug 5-fluorouracil (5-FU). Using Hep3B and Huh7 cell lines, we analyzed how Six2 affects various cellular functions, including viability, proliferation, apoptosis, and invasion. Our research also delved into Six2's regulatory impact on DNMT1 levels, E-cadherin expression, and the methylation of the E-cadherin promoter, all of which are crucial for 5-FU resistance in HCC cells.
View Article and Find Full Text PDFOncogene
November 2024
Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
Breast cancer (BC) is the most common malignant tumor in women, and the majority of BC-related deaths are due to tumor metastasis. There is emerging evidence for the role of long noncoding RNAs (lncRNAs) in tumor progression. Nevertheless, lncRNAs that drive metastasis in patients with BC and the underlying mechanisms of lncRNAs are still largely elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!