Cytosolic phospholipase A(2) alpha (cPLA(2)alpha, type IVA phospholipase) acts at the membrane surface to release free arachidonic acid, which is metabolized into inflammatory mediators, including leukotrienes and prostaglandins. Thus, specific cPLA(2)alpha inhibitors are predicted to have antiinflammatory properties. However, a key criterion in the identification and development of such inhibitors is to distinguish between compounds that bind stoichiometrically to cPLA(2)alpha and nonspecific membrane perturbants. In the current study, we developed a method employing isothermal titration calorimetry (ITC) to characterize the binding of several distinct classes of cPLA(2)alpha inhibitors. Thermodynamic parameters and the binding constants were obtained following titration of the inhibitor to the protein at 30 degrees C and pH 7.4. The compounds tested bound cPLA(2)alpha with a 1:1 stoichiometry, and the dissociation constant K(d) of the inhibitors calculated from the ITC experiments correlated well with the IC(50) values obtained from enzymatic assays. Interestingly, binding was observed only in the presence of a micellar surface, even for soluble compounds. The site of binding of these inhibitors within cPLA(2)alpha was analyzed by testing for binding in the presence of methyl arachidonyl fluorophosphonate (MAFP), an irreversible active site inhibitor of cPLA(2)alpha. Lack of binding of inhibitors in the presence of MAFP suggested that the compounds tested bound specifically at or near the active site of the protein. Furthermore, the effect of various detergents on the binding of certain inhibitors to cPLA(2)alpha was also tested. The results are discussed with reference to thermodynamic parameters such as changes in enthalpy (DeltaH), entropy (DeltaS), and free energy (DeltaG). The data obtained from these studies provide not only structure-activity relationships for compounds but also important information regarding mechanism of binding. This is the first example of ITC used for studying inhibitors of enzymes with interfacial kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2008.08.025 | DOI Listing |
Protein Sci
January 2025
Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.
The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pediatrics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Butyric acid (BA) can potentially enhance the function of the intestinal barrier. However, the mechanisms by which BA protects the intestinal mucosal barrier remain to be elucidated. Given that the Ras homolog gene family, member A (RhoA)/Rho-associated kinase 2 (ROCK2)/Myosin light chain kinase (MLCK) signaling pathway is crucial for maintaining the permeability of the intestinal epithelium, we further investigated whether BA exerts a protective effect on epithelial barrier function by inhibiting this pathway in LPS-induced Caco2 cells.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.
Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM.
View Article and Find Full Text PDFACS Catal
December 2024
Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.
The 3-chymotrypsin-like protease (3CL-PR; also known as Main protease) of SARS-CoV-2 is a cysteine protease that is the target of the COVID-19 drug, Paxlovid. Here, we report for 3CL-PR, the pH-rate profiles of a substrate, an inhibitor, affinity agents, and solvent kinetic isotope effects (sKIEs) obtained under both steady-state and pre-steady-state conditions. "Bell-shaped" plots of log( / ) vs pH for the substrate (Abz)SAVLQ*SGFRK(Dnp)-NH and p vs pH for a peptide aldehyde inhibitor demonstrated that essential acidic and basic groups of p = 8.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India.
The remarkable clinical success of third-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) has significantly advanced the treatment landscape for non-small-cell lung cancer (NSCLC). However, the emergence of the tertiary point mutation C797S poses a substantial obstacle to their clinical efficacy, leading to a dearth of FDA-approved targeted therapies for patients harboring this mutation. Addressing this pressing clinical challenge necessitates the development of novel therapeutic agents targeting the clinically challenging EGFR mutation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!