Ecological interactions are fundamental to the transmission of infectious disease. Arboviruses are particularly elegant examples, where rich arrays of mechanisms influence transmission between vectors and hosts. Research on host contributions to the ecology of arboviral diseases has been undertaken within multiple subdisciplines, but significant gaps in knowledge remain and multidisciplinary approaches are needed. Through our multidisciplinary review of the literature we have identified five broad areas where hosts may influence the ecology of arboviral transmission: host immunity; cross-protective immunity and antibody-dependent enhancement; host abundance; host diversity; and pathogen spillover and dispersal. Herein we discuss the known and theoretical roles of hosts within these topics and then apply this knowledge to three epidemiologically important mosquito-borne arboviruses that occur in Australia: dengue virus (DENV), Murray Valley encephalitis virus (MVEV), and Ross River virus (RRV). We argue that the underlying mechanisms by which hosts influence arboviral activity are numerous and attempts to delineate these mechanisms further are needed. Investigations that focus on hosts of vector-borne diseases are likely to be rewarding, particularly where the ecology of vectors is relatively well understood. From an applied perspective, enhanced knowledge of host influences upon vector-borne disease transmission is likely to enable better management of disease burden. Finally, we suggest a framework that may be useful to identify and determine host contributions to the ecology of arboviruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/vbz.2008.0040 | DOI Listing |
Viruses
December 2024
Faculty of Medicine, Federal University of Vale do São Francisco-UNIVASF, Petrolina 56304-917, PE, Brazil.
Arthropod-borne viral diseases are acute febrile illnesses, sometimes with chronic effects, that can be debilitating and even fatal worldwide, affecting particularly vulnerable populations. Indigenous communities face not only the burden of these acute febrile illnesses, but also the cardiovascular complications that are worsened by urbanization. A cross-sectional study was conducted in an Indigenous population in the Northeast Region of Brazil to explore the association between arboviral infections (dengue, chikungunya, and Zika) and cardiac biomarkers, including cardiotrophin 1, growth differentiation factor 15, lactate dehydrogenase B, fatty-acid-binding protein 3, myoglobin, N-terminal pro-B-type natriuretic peptide, cardiac troponin I, big endothelin 1, and creatine kinase-MB, along with clinical and anthropometric factors.
View Article and Find Full Text PDFJ Vector Ecol
December 2024
Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199, U.S.A.,
Human cases of arboviral disease transmitted by mosquitoes are increasing worldwide and spreading to new areas of the United States. These diseases continue to re-emerge, likely due to changes in vector ecology, urbanization, human migration, and larger range of climatic suitability. Recent shifts in landscape and weather variables are predicted to impact the habitat patterns of urban mosquitoes such as and .
View Article and Find Full Text PDFLancet Microbe
November 2024
Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal. Electronic address:
Background: The global distribution and prevalence of arboviral diseases have increased in recent years, driven by factors such as climate change, biodiversity loss, globalisation, and urbanisation. These diseases are often underestimated due to uneven surveillance and unreported asymptomatic cases. Current surveillance relies on vector and clinical surveillance.
View Article and Find Full Text PDFInfect Dis Poverty
August 2024
Ecology Laboratory, Department of Vector Control, Institute of Tropical Medicine Pedro Kourí, Havana, Cuba.
Background: Aedes aegypti, the primary vector of dengue, chikungunya, and Zika viruses, poses a significant public health threat worldwide. Traditional control methods using insecticides are increasingly challenged by resistance and environmental concerns. The sterile insect technique (SIT) offers an eco-friendly alternative that has been successfully applied to other insect pests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!