The characteristics of Cs accumulation and localization in edible mushrooms were examined using the mycelia of Pleurotus ostreatus-Y1. Scanning electron microscope images revealed the existence of white spots, and energy dispersive X-ray microanalyzer analysis indicated the presence of larger amounts of Cs and P in these spots in mycelia cultured on medium containing 25 mM CsCl. The (137)Cs activities in the mycelia were approximately 4-6 times higher than those in water used for (137)Cs elution. Higher Cs concentrations in the sediment fraction including vacuolar pellets were obtained compared to the upper fractions. It was observed that yellowish spots caused by the fluorescence of 4',6-diamidino-2-phenylindole (DAPI)-stained polyphosphate were localized in the mycelia. The higher fluorescence intensity of the yellowish-grained spots was measured in comparison with other regions in the mycelium. These results suggested that Cs in the mycelia was trapped by polyphosphate in vacuoles or other organelles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf801269tDOI Listing

Publication Analysis

Top Keywords

accumulation localization
8
mycelia
6
localization cesium
4
cesium edible
4
edible mushroom
4
mushroom pleurotus
4
pleurotus ostreatus
4
ostreatus mycelia
4
mycelia characteristics
4
characteristics accumulation
4

Similar Publications

Human UDP-glucuronosyltransferases (UGTs) are pivotal phase II metabolic enzymes facilitating the transfer of glucuronic acid from UDP-glucuronic acid (UDPGA) to various substrates. UGTs are classic type I transmembrane glycoproteins, mainly localized in the endoplasmic reticulum (ER) membrane. This review comprehensively explores UGTs, encompassing gene expression, functional characteristics, substrate specificity, and metabolic mechanisms.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.

View Article and Find Full Text PDF

Purpose Of Review: The role of the lymphatic system in clearing extravasated fluids, lipid transport, and immune surveillance is well established, and lymphatic vasculature can provide a vital role in facilitating crosstalk among various organ systems. Lymphatic vessels rely on intrinsic and local factors to absorb and propel lymph from the interstitium back to the systemic circulation. The biological implications of local influences on lymphatic vessels are underscored by the exquisite sensitivity of these vessels to environmental stimuli.

View Article and Find Full Text PDF

Structural, architectural, contractile or electrophysiological alterations may occur in the left atrium (LA). The concept of LA cardiopathy is supported by accumulating scientific evidence demonstrating that LA remodeling has become a cornerstone diagnostic and prognostic marker. The structure and the function of LA and left atrial appendage (LAA) which is an integral part of the LA, are key elements for a better understanding of multiple clinical conditions, most notably atrial fibrillation (AF), cardioembolism, heart failure and mitral valve diseases.

View Article and Find Full Text PDF

Calcium ions (Ca) are important second messengers and are known to participate in cold signal transduction. In the current study, we characterized a Ca-binding protein gene, VamCP1, from the extremely cold-tolerant grape species Vitis amurensis. VamCP1 expression varied among organs but was highest in leaves following cold treatment, peaking 24 h after treatment onset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!